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Abstract

Let p be a prime number and r > 0 an integer. In this paper, we prove that there
exists an anti-equivalence between the category of weak (@,G)—modules of height < r and
a certain subcategory of the category of Galois stable Z,-lattices in potentially semi-stable
representations with Hodge-Tate weights in [0, 7]. This gives an answer to a Tong Liu’s question
about the essential image of a functor on weak (¢, @)—modules. For a proof, following Liu’s
methods, we construct linear algebraic data which classifies lattices in potentially semi-stable

representations.

1 Introduction

Let K be a complete discrete valuation field of mixed characteristics (0,p) with perfect residue
field. We take a system of p-power roots (m,)n>0 of a uniformizer m of K such that mp = 7
and ﬂf’L_H = 7,. We denote by Gk and Gk, absolute Galois groups of K and K, := K(m,),
respectively.

For applications to interesting problems such as modularity liftings, it is useful to study an
integral version of Fontaine’s p-adic Hodge theory, which is called integral p-adic Hodge theory.
It is important in integral p-adic Hodge theory to construct “good” linear algebraic data which
classify G g-stable Z,-lattices in semi-stable, or crystalline, Q)-representations of Gy with Hodge-
Tate weights in [0, r]. Nowadays various such linear algebraic data are constructed; for example, so
called Fontaine-Laffaille modules, Wach modules and Breuil modules. It is one of the obstructions
for the use of these algebraic data that we can not use them without restrictions on the absolute
ramification index e of K and (or) r. In [Li3], based on a Kisin’s insight [Ki] for a classification

of lattices in semi-stable representations, Tong Liu defined notions of (p, G)-modules and weak

(¢, G)-modules. He constructed a contravariant fully faithful functor T from the category of weak

(¢, G)-modules of height < r into the the category of free Z,-representations of Gg. It is the
main theorem of loc. cit. that, without any restriction on e and r, T induces an anti-equivalence

between the category of (¢, G)-modules of height < r and the category of lattices in semi-stable
Qp-representations of Gx with Hodge-Tate weights in [0,7]. In the end of loc. cit., he posed the

following question:

Question 1.1. What is the essential image of the functor T on weak (p, G’)—modules?

He showed that, if a representation of Gi corresponds to a weak (¢, G)-module of height < r,
then it is semi-stable over K,, for some n > 0 and has Hodge-Tate weights in [0, r]. However, the
converse does not hold in general.
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In this paper, we give an answer to Question 1.1. Denote by mg the maximum integer such that
K contains p™°-th roots of unity. For any non-negative integer n, we denote by C), the category
of free Z,-representations 1" of G which satisfy the following property; there exists a semi-stable
Qp-representation V' of G with Hodge-Tate weights in [0, r] such that T'®z, Q, is isomorphic to
V' as representations of Gx,. Our main result is as follows.

Theorem 1.2. The essential image of the functor T is Cono -

Therefore, we conclude that T induces an anti-equivalence between the category of weak (¢, G‘)—
modules of height < r and the category Cy,, .
The crucial part of our proof is to show the relation

Cmy, CC"CCy,

where C” is the essential image of the functor 7' and m is the maximum integer such that the
maximal unramified extension of K contains p™-th roots of unity (cf. Lemma 3.1). We have two
keys for our proof of this statement. The first one is Proposition 3.13, which gives a relation between
weak (o, G’)—modules and “finite height” representations. For the proof, following the method of
Liu’s arguments of [Li3] and [Li4], we construct certain linear data which classifies lattices in
potentially semi-stable representations. This is a direct generalization of the main result of [Li3]
(the idea for our proof is essentially due to Liu’s previous works). The second one is Proposition
3.15; it says that the Gk, -action of a finite height representation of Gk which is semi-stable over
K,, extends to a G g-action which is semi-stable over K.

Acknowledgments. The author thanks Akio Tamagawa who gave him useful advice in the proof
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Notation : For any topological group H, a free Z,-representation of H (resp. a Q,-representation
of H) is a finitely generated free Z,-module equipped with a continuous Z,-linear H-action (resp. a
finite dimensional Q,-vector space equipped with a continuous Q,-linear H-action). We denote by
Repy, (H) (resp. Repg, (H)) the category of them. For any field F', we denote by G the absolute
Galois group of F' (for a fixed separable closure of F).

2 Preliminary

In this section, we recall some results on Liu’s (i, G)-modules and related topics. Throughout this
paper, let p > 2 be a prime number. Let K be a complete discrete valuation field of mixed char-
acteristics (0, p) with perfect residue field k. Let L be a finite extension of K. Take a uniformizer
mr, of L and a system of p-power roots (7p ,)n>0 of mr such that 7z ¢ = 77, and w§7n+1 = TLn-
We denote by kj, the residue field of L. Put L,, = L(7p ), Lo = Up>oLy and define L to be
the Galois closure of L., over L. We denote by Hy and G’L the Galois group of IA//LOO and ﬁ/L,
respectively. We denote by K" and L™ maximal unramified extensions of K and L, respectively.
Note that we have L™ = LK.

Let R = l’&nOf/ p, where O is the integer ring of K and the transition maps are given by
the p-th power map. We write 7z := (71,5 )n>0 € R. Let &1 := W (kr)[ur] be the formal power
series ring with indeterminate uy. We define a Frobenius endomorphism ¢ of &, by up — u}
extending the Frobenius of W (k). The W (ky)-algebra embedding W (kg)[ur] < W(R) defined
by ur, — [rr] extends to & — W(R) where [#] is the Teichmiiller representative.

We denote by Mod;g , the category of p-modules M over &, which satisfy the following:

e M is free of finite type over & ; and
e M is of height < r in the sense that coker(1 ® ¢: &1 ®y e, M — M) is killed by Er(ur)".



Here, Ep,(uy) is the minimal polynomial of 7z, over W (ky)[1/p], which is an Eisenstein polynomial.
We call objects of this category Kisin modules of height < r over &. We define a contravariant
functor Ts, : Mod)e, — Repy (Gr..) by

Te, (M) := Homes, ., (0, W(R))

for an object M of Mod)g, . Here a G, -action on Tg, (M) is given by (0.9)(z) = o(g(x)) for
c€Gr ,g€Ts, (M), z N

Proposition 2.1 ([Ki, Corollary 2.1.4 and Proposition 2.1.12]). The functor Ts,: Mod)g, —
Repy, (GL..) is exact and fully faithful.

Let S;, be the p-adic completion of W (kz)[ur, EL(Z.?L)j]iZO and endow S with the following
structures:

e a continuous @y (x, )-semilinear Frobenius ¢: S; — Si defined by uy — uf.
e a continuous W (ky)-linear derivation N: Sy, — Sy, defined by N(ur) = —ur.

e a decreasing filtration (FiliS L)i>o on Sr. Here Fil’S 1. is the p-adic closure of the ideal
EL(#L)j

generated by i

for all j > 1.

The embedding &;, — W(R) defined above extends to & — S < Aqis and Sp[1/p] — BT

We take a primitive p-power root (,» of unity for n > 0 such that Cg it = Cpn. We set §Cr:1i
(Cpn)ns>0 € R and t := —log([g]) € Aeis. For any integer n > 0, let ti™ := t’”(")’yq(n)(%) where
n = (p—1)g(n)+r(n) with g(n) > 0, 0 < r(n) < p—1 and 7;(z) = % the standard divided power.
Now we denote by v: W(R) — W (k) a unique lift of the projection R — k, which extends to a

map v: Bl — W (k)[1/p]. For any subring A C B}, we put I, A = Ker(v on B, )N A.

cris cris? cris
We define a subring R, containing Sy, of Bj;is as below:

Ry = {Z fit' | fi e Sp[1/p] and fi — 0 as i — oo}.
=0

Furthermore, we define ﬁL = R NW(R). We see that Sy, is not Gp-stable under the action
of Gp in BI... However, Ry, Ry,I. Ry and I, R} are Gp-stable. Furthermore, they are stable

cris®

under Frobenius in Bctis. By definition G p-actions on them factor through G..

For an object 9t of Mod?GL, the map MM — ﬁL ®p,&, M defined by x — 1 ® z is injective. By
this injection, we often regard 9 as a ¢(&y)-stable submodule of Ry Q& M.

Definition 2.2. A weak (o, G1)-module of height <1 over &, is a triple 9t = (M, p, G1) where
(1) (9, ) is an object of Mod)g, ,
(2) Gy is an ﬁL—semilinear continuous Gz-action on ﬁL Q& M,
(3) the Gz-action commutes with Pz, ®pm, and
(4) MC (R @p, M)z

Furthermore, we say that M is a (g, GL)-module of height < r over &, if M satisfies the additional
condition;

(5) éL acts on ﬁL Rp,6. m/[.;,_ﬁL(ﬁL Ryp,61 Qﬁ) trivially.



We always regard RL Rp,&, M as a Gr-module via the projection Gp — Gr. We denote by

WMod;’gLL (resp. Mod;’gLL) the category of weak (¢, G1)-modules of height < r over &1, (resp. the

category of (¢, G1,)-modules of height < r over &p).

We define a contravariant functor 77 : WMod;’GGLL — Repy, (GL) by

Tr,(9) = Hom

2,..(RL @ps, M W(R))

for an object M = (M, p, GL) of WMod;gLL. Here a Gp-action on Ty, (90) is given by (0.g)(z) =

o(g(o1x)) for 0 € Gp,g € Tp(M),z € Ry, Rp,&, M.

Remark 2.3. We should remark that notations LmGL,ﬁL,MOd;’GGLL, ... above depend on the
choices of a uniformizer wp, of L and a system (7p, n)n>0 of p-power roots of . Conversely, if we
fix the choice of 1, and (7p ,)n>0, such notations are uniquely determined.

Theorem 2.4. (1) ([Li3, Theorem 2.3.1 (1)]) Let M = (M, 0, G1) be an object of WMod;’gLL.
Then the map

0: Te, (M) — T1(9N)

defined by 0(f)(a ® z) := ap(f(x)) for a € Ry, and x € M, is an isomorphism of representations
Of GLoo .

(2) ([Li3, Theorem 2.3.1(2)]) The contravariant functor Ty, gives an anti-equivalence between the
following categories:

— The category of (p,Gr)-modules of height < r over &p,.

— The category of Gy -stable Zy-lattices in semi-stable Qp-representations with Hodge-Tate
weights in [0,7].

(8) ([Li3, Theorem 4.2.2]) The contravariant functor Ty : wMod;gLL — Repy, (G1) is fully faithful.
Furthermore, its essential image is contained in the category of G -stable Z,-lattices in potentially
semi-stable Q,-representations of G which are semi-stable over L, for some n > 0 and have
Hodge-Tate weights in [0,7].

Remark 2.5. Put m = max{i > 0;(,: € L"}. We claim that any Q,-representation of G, which
is semi-stable over L,, for some n > 0 is always semi-stable over L,,.

In the former half part of the proof of [Li3, Theorem 4.2.2], a proof of this claim with “m =
max{i > 0;(, € L}” is written. Unfortunately, there is a gap in the proof. In the proof, the
assumption that the extension L((,, 7, n)/L is totally ramified is implicitly used (p. 133, between
[. 14 and [. 21 of [Li3]). However, this condition is not satisfied in general. So we need a little
modification. Put m = max{i > 0;(, € L™} as the beginning. Denote by L the completion of
LY. We remark that the completion of the maximal unramified extension of L,, is just f‘;(ﬂ'Ln)
Let V be a Qp-representation of Gy which is semi-stable over L, for some n > 0. Then V is
semi-stable over f';(TFL,n). We remark that the proof of [Li3, Theorem 4.2.2] exactly holds at least
under the assumption that the residue field of the base field is algebraically closed. (We need only
the first paragraph of loc. cit. here.) Thus we know that V' is semi-stable over f‘;(ﬂ ,m) and thus
we obtain the claim.

Now we restate Theorem 1.2 with the above setting of notation and give a further result.
Fix the choice of a uniformizer mx of K and a system (7g n)n>0 Of p-power roots of mg, and
define notations K, Mod;’g;:, ... with respect to them. Recall that mg (resp. m) is the maximum

integer such that K (resp. K"") contains p™o-th (resp. p™-th) roots of unity. We note that the
inequality mo < m always holds. For any non-negative integer n, we denote by C; the category



of free Z,-representations T' of Gx which satisfy the following property; there exists a semi-stable
Qp-representation V' of G with Hodge-Tate weights in [0, r] such that T' ®z, Q, is isomorphic to
V' as representations of G, .

Our goal in this paper is to show the following;:

Theorem 2.6. The essential image of the functor T : WMod;gﬁ — Repg, (Gk) is C},,, -

As an immediate consequence of the above theorem, we obtain

Corollary 2.7. The functor Tk induces an anti-equivalence WMod;’gI’; = Coo -

For later use, we end this section by describing the following proposition.

Proposition 2.8. Let L be a finite totally ramified extension of K. Then the restriction functor
from the category of semi-stable Qp,-representations of Gk into the category of semi-stable Qp-
representations of G, is fully faithful.

Proof. In view of the theory of Fontaine’s filtered (¢, N)-modules, the result immediately follows
from calculations of elementary linear algebras. O

3 Proof of Main Theorem

Our main goal in this section is to give a proof of Theorem 2.6. In the first three subsections, we
prove the following lemma, which plays an important role in our proof.

Lemma 3.1. Denote by C" the essential image of Tk : WMod;’gj’: — Repy, (Gk). Then we have
C, Cccrccy,.
mo m

Clearly, Theorem 2.6 follows immediately from the lemma if my = m. However, the condition
mg = m is not always satisfied. Before starting a main part of this section, we give some remarks
about this condition.

Proposition 3.2. (1) If k is algebraically closed, then mg = m.

(2) If K(Cpmo+1)/ K is ramified, then mo = m.

(8) Suppose that ¢, € K (resp. (4 € K) if p is odd (resp. p=2). Then K s totally ramified over
K if and only if mg = m.

Proof. The assertion (1) and (2) is clear. We prove (3). If my < m, then K((pm) is a non-trivial
unramified extension of K and thus the extension K /K is not totally ramified. Conversely, suppose
that K /K is not totally ramified. Then there exists an integer n > 0 such that K ((pn,m,)/K is
not totally ramified. This implies so is K ({pn,m,)/K(m,). We may suppose n > m. Since
Gal(K (Cpn, mp) /K (my,)) is isomorphic to Z/p"~"Z (here we need the assumption ¢, € K (resp.
G € K) if pis odd (resp. p = 2)), any subfield of K ((pn,m,)/K(m,) is of the form K((y,7,)
for mg < ! < n. Thus there exists an integer mo < ly < n such that K" (m,) N K ((pn,mp) =
K (Cpromn). We have (o € K" (m,) N K" ((pn). Since ¢, € K (resp. ¢4 € K) if p is odd (resp. p =
2), we have also K" (m,) N K" ((pn) = K. This implies lp < m. Since the residue field extension
corresponding to K ((pn,mn)/ K (m,) is non-trivial, the extension K (i, mn)/K () is non-trivial
extension and thus so is K ((ym, m,)/K (7). This implies 1 < [K(Cpm, 1) : K (7)) = [K({pm) : K]
and hence mg < m. O

Remark 3.3. The condition my = m is not always satisfied. Here are some examples.

(1) Suppose p > 2. Set a := (2 + p)/®=D 3 := (—p)"/®=V) and K := Q,(aB). The field K is
totally ramified over @@, since the minimal polynomial of a3 over Q, is an Eisenstein polynomial
XP=1— (24 p)(—p). It is well-known that Q,(8) = Q,((,). The extension K((,)/K is not totally
ramified since so is Q,(a)/Q, and p > 2 (note that the residue class of « is not contained in F,).



Now we take any odd prime p such that the extension Q(«)/Q is unramified (e.g., p = 3,5,7,...).
Then K((p)/K is an unramified extension. This implies that mo = 0 < m. (Moreover, we see that
m=1.)

(2) Suppose p = 2 and set K := Qq2(v/—5). Then K({y)/K is unramified extension of degree 2,
and thus mg = 1 < m. (Moreover, we see that m = 2.)

(3) Let K’ be a finite extension of Q, such that it contains p-th roots of unity and K'({pe)/K’
is a totally ramified extension. Let K" be an unramified Z,-extension of K’. We denote by K {n)
and K é;l) the unique degree-p™-subextensions of K'({p~)/K’ and K" /K’, respectively. Explicitly,
the field K7, coincides with K'((pm6+n) where mg = max{i > 0 | (; € K'}. If we denote by M,
the composite field of K En) and K é'n), then we have isomorphisms

Gal(M(y/K') ~ Gal(K[,)/K') x Gal(K{, /K') ~ Z/p"Z x Z/p"Z.

Let K be the subfield of M(,)/K’ which corresponds to the group of diagonal components of
Gal(My,)/K') ~ Z/p"Z x Z/p"7Z via Galois theory. We consider mg and m for this K. Since
KﬂK{n) = K', we know mg = mg. On the other hand, since M,y = KL,y = K(Cpmg]+n) and the

extension M(,)/K is unramified, we have m > mg +n = mg + n.

3.1 Lattices in potentially semi-stable representations

In this subsection we define a notion of (¢, Gr, K )-modules which classifies lattices in potentially
semi-stable Q,-representations of Gk which are semi-stable over L.

Definition 3.4. A (y, GL,K)-module of height < r over &y, is a pair (951, Gg) where

dTGL

1 s

= (9M, ¢, G1) is an object of Mo

2) Gk is a W(R)-semilinear continuous Gg-action on W(R) ®, s, M,

(1)
(2)
(3) the G g-action commutes with oy (r) ® wor, and
(4)

4) the W(R)-semilinear Gp-action on W(R) ®y,e, M(= W(R) @7, (Re Rp,&, M)) induced
rGrL

from the GL-structure of M € Mod/GL

(2) to GL.

coincides with the restriction of the G g-action of

If (M, Gk) is a (p, G, K)-module of height < r over &1, we often abuse notations by writing 9t

for (M, G ) for simplicity. We denote by Modr GL’ the category of (¢, G, K)-modules of height
<rover §p.

We define a contravariant functor Tp, /K" Mod;CG LK Repy, (Gk) b

11,5 (M) = Homy(r) (W (R) ®p,e, M, W(R))

for an object M of Mod;g“ with underlying Kisin module 9. Here a Gi-action on TL/K(SﬁI)
is given by (0.9)(z) = o(g(c1x)) for 0 € Gk, g € TL/K(SDT) z € W(R) ®yp,6, M. Note that we

have natural isomorphisms
Homg, (Rp, ®p.0, M, W(R)) 5 Homy () o (W(R) @, 5 (Ry @pe, M), W(R))
5 HOmW(R)’cp(W(R) Ry, M, W(R))

Thus we obtain o . .

This is G -equivariant by the condition (4) of Definition 3.4. In particular, T}, /K (o) ®z, Qp is
semi-stable over L by Theorem 2.4 (2).
The goal of the rest of this subsection is to prove the following theorem.



Theorem 3.5. The contravariant functor " /K tnduces an anti-equivalence between the following
categories:

— The category of (i, Gr, K)-modules of height < r over &,.

— The category of Gi-stable Zy-lattices in potentially semi-stable Qp-representations of Gk
which are semi-stable over L and have Hodge-Tate weights in [0,r].

The above theorem follows by essentially the same arguments of Liu ([Li3], [Li4]), but we write
a proof here for the sake of completeness. Before a proof, we recall Liu’s comparison morphisms
between (p, Gr)-modules and representations associated with them. Furthermore, we define its

variant for (p, G, K)-modules.
Let M = (M, p, GL) be a weak (p, G)-module of height < r over &. By identifying T7,(91)

with Homyy (), (W(R) ®, 5, (Ry ®p,&, M), W(R)), we define a W (R)-linear map

iL: W(R) @z, (RL @6, M) — W(R) @z, T) (M)

by the composite W(R) ®z Ry Ry, M) — Homg, (T (9M), W(R)) S W(R) ®z, TY (9%). Here,
the first arrow is defined by = — (f — f(z),Vf € T(9)) and the second is a natural isomorphism.
Also, for a (¢, G, K)-module 9 of height < r over &, we define a natural W (R)-linear map

ipy: W(R) ®p6, M — W(R) @z, T[\///K(gjt)

by a similar way. Let t be an element of W (R) \ pW (R) such that ¢(t) = pEy(ur)Er(0)~1t. Such
t is unique up to units of Z,.

Proposition 3.6. (1) ([Li3, Proposition 3.1.3]) The map i1, as above is injective, which preserves
Frobenius and G -actions. Furthermore, we have o(t)"(W(R) ®z, Ty (9)) C Im ir.
(2) The map ir k as above is injective, which preserves Frobenius and G -actions. Furthermore,

we have ¢(t)"(W(R) ®z, TZ/K(EﬁT)) ClImip k.
(3) Let M be a (o, G, K)-module of height < r over & with underlying Kisin module 9. Then
the following diagram is commutative:

W(R) ®z, (R ®pe, M W(R) @z, T (M)

zl ZTW(R)GMV

W(R) @y, MC HE W(R) @z, T ()

Here, the left vertical arrow is a natural isomorphism and n is defined in ( 3.1).

Proof. The commutativity of (3) is clear by construction, and the rest assertions follow by essen-
tially the same proof as [Li3, Proposition 3.1.3]. O

In the rest of this subsection, we denote by Repg’pL'St(G k) the full subcategory of Repy (G )
appeared in Theorem 3.5. The isomorphism 7 shows below.

Lemma 3.7. The functor TL/K has values in RepgpL‘St(GK).

Next we show the fully faithfulness of the functor T L/K-

Lemma 3.8. The functor TL/K is fully faithful.



Proof. Let M and M’ be (o, G, K )-modules of height < r over &, with underlying Kisin modules
9 and 9V, respectively. Take any Gx-equivariant morphism f: 77, / K(Dﬁt) — Ty, / K(E)AJI’ ). By the
map 7, we identify TL/K(EﬁT) and TL/K () with 77 (9) and T (90), respectively. Since 17, is
fully faithful, there exists a unique morphism §: M — M of (p,Gr)-modules of ‘height < 7 over
&, such that T(f) = f. It is enough to show that f is in fact a morphism of (¢, G, K)-modules,
that is, W(R) @ f: W(R) Qyp,&, M — W(R) Qy s, M is Gg-equivariant. Consider the following
diagram:

LL/K

W(R) ®p.6, M—————W(R) ®z, T);c (M)
W(R)®f W(R)®fVT
W(R) @6, ML = W(R) @z, Tryx (W)

We see that the above diagram is commutative. Since W(R)® f¥ and two horizontal arrows above
are G g-equivariant, so is W(R) ® f. O

Lemma 3.9. The functor TL/K: Mod;g“ — RepTZL *"(Gk) is essentially surjective if L is a
Galois extension of K.

To show this lemma, we recall arguments of [Li4, §2]. Suppose L is a (not necessary totally
ramified) Galois extension of K. Let T be an object of Reng *(Gk). Put d = ranky T. Take
a (p,Gr)-module M = (M, p,G1) over & such that Tp (M) = T|g,. We consider the map
ir: W(R) ®p,6, M — W(R) @z, TY(9m) = W(R) ®z, TV. By the same argument as the proof of
[Li4, Lemma 2.3.1], we can check the following

Lemma 3.10. W(R) ®,,&, M is stable under the G -action via ir,.

We include (a main part of) the proof in loc. cit. of this lemma here since we will use this
argument again in the next subsection (cf. the proof of Theorem 3.13). By [Br], we know that
D := Sp[1/p] ®@p,s, M has a structure of a Breuil module! which corresponds to Vg, , where
V :=T®z,Qp. In particular, we have a monodromy operator Np on D. Set D :=D/I,S[1/p|D
There exists a unique p-compatible W (ky)-linear section s: D — D. Breuil showed in loc. cit.
that Np preserves s(D) and thus we can define N := Nplspy: s(D) = s(D). Then the G'-action

on B ®s,1/p s(D)(= B, @z, (Re Dy, M)) induced from the G p-structure on 9N is given by

g(a® ) zg a)yi(~log([(9)]) ® N ()

for any g € Gr,a € B and = € s(D). Here, £(g) := g(r1)/7L € R*. Set

D= {nyz ® Nl | x € S(D)} C BSJg ®W(kL)[1/p] S(D)

where u := log([r;]) € BJ. This is a ¢-stable W (kp)[1/p]-vector space of dimension d. Setting
the monodromy Np+ on B by N(u) =1, we equip Byt @w (1,)1/p $(D) (resp. B ®g, V") with
a monodromy oper;tor N by N := NBt ® lypy (resp. N := NBt ® lyv). Then it is easy to
see that D is stable under N. On the :)ther hand, we have a natbural G k-equivariant injection
12 BE Ow (k) 1/p) Dst(V) — B ®q, V¥ where Dy (V) := (B ®q, VV)Gr is a filtered (¢, N)-
module over L. (Here we remark that Dg (V') is equipped with a natural G g-action since L/K
is Galois.) Since G, acts on D trivially (cf. §7.2 of [Lil]), the image of D under the injection

1'We do not describe the definition of Breuil modules in this note. See §6.1 of [Br] for axioms of Breuil modules.



~ ir,B .
B:; ®W (k1 )[1/p] s(D) = B:{ Oz, (R ®p,a, M) = BS"{ ®q, VV is equal to t(Dg(V)). Here,
ir,B = B:; ® tr,, which is compatible with Frobenius and monodromy operators. Hence we have
an isomorphism : D4 (V) = D which makes the following diagram commutative:

Dy (V) C B @w (kpy1/p) Dst (V) ———— B @q, V'V

|
D

LL,B

C By ®w (k)1 /p) 8(D) = B @q, V"

Note that i is compatible with Frobenius and monodromy operators. We identify Dg (V) with D
by 1.

~ Let ey,...,eq be a W(kp)[1/p]-basis of D, and define a matrix N € Mq(W (kz)[1/p]) by
N(s(e1),...,s(eq)) = (s(e1),...,s(eq))N. Put &; = Y 72 vi(u) ® Ni(s(e;)) for any j. Then
€1,...,6q is a basis of Dg (V) = D. An easy calculation shows that the monodromy N on
Dy (V) = D is represented by N for this basis, that is, N(€1,...,&q) = (€1,...,e4)N. We de-
fine a matrix A; € GLy(W (kr)[1/p]) by g(é1,...,€q) = (€1,...,8q)A4 for any g € Gk. Since

the Gg-action on Dy (V) = D is compatible with N, we have the relation Ayg(N) = NA,.
Consequently, we have

g(s(er),...,s(eq)) = (s(e1), ..., s(eq))exp(—AgN) A, (3.2)

in Bfi®q, V", where Ay := log([g(m1)/7L]) € B;,. This implies that By ®p.6, M = Bl @w (k.)(1/5)
s(D) is stable under the Gk-action via iy . Now Lemma 3.10 follows by an easy combination
of Proposition 3.6 (1) and [Li3, Lemma 3.2.2] (cf. the first paragraph of the proof of [Li4, Lemma

2.3.1]).

Proof of Lemma 3.9. We continue to use the same notation as above. By Lemma 3.10, we know

that 90 has a structure of an object of Mod;’gf’K with the property that the map W(R)®,.e, M (Li>
W(R) ®z, Ty (M) = W(R) ®z, TV is Gg-equivariant. Let n: Tp(9) — T,k (M) be the
isomorphism defined in ( 3.1). By Proposition 3.6 (3), we know that W (R) @ ¥ induces an
isomorphism iz (W(R) ®@pe, M) — ir/x(W(R) ®4e, M), which is Gg-equivariant. Since
e()"(W(R) ®z, T/ (M)) (resp. o()"(W(R) ®z, Ti//K(Em))) is contained in (ir(W(R) ®,.5,
M)) (resp. (ir/x(W(R) ®p,e, M))), we known that the map o(t)"(W(R) ®z, Y (o) =
o(t)"(W(R) ®z, TZ/K(EﬁT)) induced from W(R) ® ¥ is Gg-equivariant. Thus so is n: T =
7y 00 5 T e (). .
Remark 3.11. Let éq,...,¢é4 be a G-basis of ¢*IM, which is also an Sk [1/p]-basis of D. Denote
by e; the image of é; under the projection D — D. Then ey,...,eq is a W(k)[1/p]-basis of D.
For these basis, we see that the matrix A, € GLq(W (k)[1/p]) as above is in fact contained in
GL4(W(kr)) by Lemma 3.9. (However, we never use this fact in the present paper.)

Lemma 3.12. The functor TL/K: Mod;’gLL’K — Rep%’:'St(GK) is essentially surjective for any
finite extension L of K.

Proof. Let T be an object of RepZSt’T(GK). Let L’ be the Galois closure of L over K (and fix the
choice of a uniformizer of L’ and a system of p-power roots of it; see Remark 2.3). Since we have
already shown Theorem 3.5 for 17 /K> we know that there exists a (¢, G, K )-module M over S
such that TL//K (95“(') ~ T as representations of Gx. On the other hand, we have a unique (¢, GL)—
module 9 such that T ~ 77, (9:7?) as representations of G, since 1" is semi-stable over L. We denote
by 9 and 9 underlying Kisin modules of 9 and 90, respectively. By [Li5, Theorem 3.2.1] and
Proposition 3.6 (3), the image of W(R) ®,,s,, 9 under i1/, is equal to that of W(R) ®, &, M
under i7,. Hence we have a ¢-equivariant isomorphism W(R) @, s,, M ~ W(R) ®,.c, M. We



define a G g-action on W(R) ®,,.e, M by this isomorphism. Then 90 has a structure of (¢, Gr, K)-
module over &, so that ir: W(R)®y &, M — W(R)®z, TV is G g-equivariant. Since TL/K (M) =
HOmW(R)W(W(R) ®%GL gﬁ, W(R)) ~ HOIHW(R)W(W(R) ®%GL/ S)n/, W(R)) = TL’/K(WI) =T as
representations of G, we have done. O

3.2 (C,, CcC

We prove the relation C],  C C" in the assertion of Lemma 3.1. At first, fix the choices of
a uniformizer mx of K and a system (wg n)n>0 of p-power roots of mx, and define notations

K,,6 K,Mod;’gf, ... with respect to them (see also Remark 2.3). We also consider notations
6k, .Sk, ,- .. with respect to the uniformizer g := mx , of K,, and the system (7x n+m)m>0 of
p-power roots of mg, . Note that we have 6 C 6k, , Sk C Sk, and Ek, (uk,) = Ex(uk) with
the relation u’}?ﬂ = ug.

To show the relation C},, . C C", it follows from Lemma 2.1.15 of [Ki] that it suffices to show
the following.

Proposition 3.13. Let T be a free Zy-representation of G which is semi-stable over K, for
some n < mq and T\, ~= T, (M) for some M € Mod g, . Then there exists a (unique) weak

(¢, G )-module M of height < r over Sg such that T (M) ~ T.

Proof. Let T,n and 9 be as in the statement. Note that K,, is a now Galois extension of K for
such n, and note also that M, := Gk, ®es, M is a Kisin module of height < r over &k, . By
Theorem 3.5, there exists a (p, Gk, , K)-module N over &, such that T ~ TKH/K(Y,?I). Denote by
9 the underlying Kisin module of 9. Since Tsy, (M) is isomorphic to T, (), we may identify
N with 9M,,. Thus M, is equipped with a structure of a (¢, CA?KH,K)-module 9M,, over Gk, such
that T ~ TKH/K(EfRn). Putting ¢*M = Gk ®y &, M, we know that G (p*IM) is contained in
W(R) ®¢,ex, Mn = W(R) ®p.e, M. We claim that G (¢*IN) is contained in Rx ®@,,e, M.
Admitting this claim, we see that 91 has a structure of a weak (¢, G x )-module of height < r over
Sk which corresponds to T', and hence we finish a proof.

Put D,, = Sk, [1/p] @&k, My and D = Sk([1/p] @y e, M. Let é1,...,6q be a Sx-basis
of ¢*M, which is an Sk, [1/p]-basis of D,, and an Sk[1/p]-basis of D. Denote by e; the image
of é; under the projection D — D/I,Sk[1/p] =: D. Then ey,...,eq is a W(k)[1/p]-basis of
D. By [Br, Proposition 6.2.1.1], we have a unique @-compatible section s: D < D of the pro-
jection D — D. Since D = Sk[1/p] @w ) p 5(D), there exists a matrix X € GLq(Sk[1/p])
such that (é1,...,¢é4) = (s(e1),...,s(eq))X. Now we extend the G x-action on W(R) ®, e, My
to Bl @wsp (D) = Bl ®wr) W(R) ®@p,e,. My) by a natural way. Take any g €
Gk and put A\, = log([g(7k,)/7K,]). We see that A\, is contained in Rg. Recall that K,
is now a totally ramified Galois extension over K. By ( 3.2), we have g(s(e1),...,s(eq)) =
(s(e1),...,s(eq))exp(—A,N)A, for some nilpotent matrix N € My(W (k)[1/p]) and some A, €
GLq(W (Kk)[1/p]). Therefore, we obtain g(é1,...,éq) = (é1,...,eq)X ‘exp(—A\gN)Ayg(X). Since
the matrix X ~lexp(—A;N)A,9(X) has coefficients in Ry, we have done. O

Remark 3.14. We remark that, for any semi-stable Q,-representation V' of G g, with Hodge-Tate
weights in [0,7], there exists a Kisin module M, € Mod)g, such that Vg, is isomorphic to
Tsy, (M) ®z, Qp (cf. [Ki, Lemma 2.1.15]). The above proposition studies the case where 90,
descends to a Kisin module over S, but this condition is not always satisfied. An example for
this is given in the proof of Proposition 3.22.

3.3 Crccr

Next we prove the relation C" C C], in the assertion of Lemma 3.1. The key for our proof is the
following proposition.
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Proposition 3.15. The restriction functor Repy (Gk) — Repg, (Gk,) induces an equivalence
between the following categories:

— The category of semi-stable Qp-representations of Gk with Hodge-Tate weights in [0,r].

~ The category of semi-stable Q,-representations V' of G, with the property that Vg, is
isomorphic to Te . (9M) @z, Qp for some M € Modg .-

The result below immediately follows from the above proposition.

Corollary 3.16. Let T be a free Z,-representation of G which is semi-stable over K,, for some
n > 0. Then the following conditions are equivalent:

= Ty, is isomorphic to Te, (M) for some M € Mod)g, .

— There exists a semi-stable Q,-representation V' of Gx with Hodge-Tate weights in [0, r] such
that T ®z, Qy is isomorphic to V' as representations of G , for some n' > 0.

Remark 3.17. In the statement of Corollary 3.16, we can always choose n’ to be n. In addition,
for a given T, V' is uniquely determined up to isomorphism. Furthermore, the association T — V
is functorial. These follow from Proposition 2.8.

Combining this corollary with Theorem 2.4 (3) and Remark 2.5, we obtain the desired relation
C" C C],. Therefore, it suffices to show Proposition 3.15. We begin with the following two lemmas.

Lemma 3.18. For any i > 0, we have a canonical decomposition

p"—1
Fil'Sk, = €P w, Fil'Sk.
j=0

Proof. Exercise. O

Lemma 3.19. Let M be a Kisin module of height < r over &k .

(1) M, = Gk, s, M is a Kisin module of height < r over Sk, (with Frobenius @on, =
P&, @ pm)- }

(2) Let M := Sk @y, M and My, := Sk, @p.6x M= Sk, @6k, Mn. Define Fi' M = {z €
M| (1® pm)(z) € Fil'Sk @, M} and Fi'M,, = {z € M,, | (1® pon)(x) € Fil'Sk, ®s, M} =
{z e M, | (1@¢m,)(z) € Fil'Sk, ®e,, Mp}. Then the natural isomorphism Sk, @s, M = M,
induces an isomorphism Sk, ®g, Fil'M 5 Fil' M,,.

Proof. The assertion (1) follows immediately by the relation Ex(ux) = Ek, (uk, ). In the rest of
this proof we identify Sk, ®g, M with M,, by a natural way. We show that Sk, ®g, Fil'’M =
Fil’ M,,. The inclusion S K, @55k Fil' M C Fil‘M,, follows from an easy calculation. We have to
prove the opposite inclusion. Let ey, ..., e4 be an & k-basis of M and define a matrix A € My(Sk)
by pon(e1,...,eq) = (e1,...,eq)A. We put ef =1®e; € ¢*M for any . Then ef,... e} is an
Sk, -basis of M,,. Take z = 22:1 are}, € Fil'M,, with aj, € Sk, . Since (1 ® pox)(z) is contained
in Fil'Sk, ®e M, we see that the matrix

a
X:=A4]|":
ad
has Coefﬁcients in Fil'Sk,. By Lemma 3.18, each a; can be decomposed as Z;’Zal ué(na,(g ) for
some ag) € Sk. Writing A = (a)1, and X = *(z1,...,24), we have
d p" -1 d )
=Y o= Y > ol
k=1 §=0 k=1
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By Lemma 3.18 again, we obtain that ZZ 1 alka,(j) € Fil'Sk. If we put Ty = Zk 1 ag)ez e M,

we have 4
(1® pam)( Z Zalkak e,
=1 k=1

which is contained in Fil'Sg ®g, 9. Therefore, each x(j) 1s contained in Fil'M. Since = =
Zp 61 qu x(jy, we obtain the fact that z is contained in Sk, ®s, Fil' M. O

We proceed a proof of Proposition 3.15. For simplicity, we denote by Ry (resp. Ro) the
former (resp. latter) category appeared in the statement of Proposition 3.15. It is well-known (cf.
[Ki, Lemma 2.1.15]) that the essential image of Ry under the restriction functor Repg (Gr) —
Rep(@p (Gk,) is contained in Ry. Furthermore, the restriction functor R; — Ry is fully faithful
since K, is totally ramified over K. Thus it suffices to show the essential surjectivity of the
restriction functor R; — Ry. Let V be a semi-stable Q,-representations V' of Gk, with the
property that Vg, is isomorphic to T, (9) ®z, Q) for some M € Mod)g,. . Set T':= T, (M)
and take any Gk, -stable Z,-lattice 77 in V such that T C T”. There exists a (¢, G &, )-module N
of height < r over S, such that 77 ~ TK (‘5?) Put M,, = Sk, s, M, which is a Kisin module
of height < r over &, . Since the functor Ts, from Modg, ~into Rep; (Gk.. ) is fully faithful,
we obtain a morphism ‘)’t — 9, which corresponds to the inclusion map T < T'. We note that
1t is 1nJectlve and its cokernel I, /M is killed by a power of p since T"/T is p-power torsion. Set

= SK,L[l/p] P&k, N ~ SK,L[l/p] Bek, M, D := SK[l/p] Ra M, N = Sk, ®6K n, M,
SK Ry, My and M := Sk ®g, M. We define filtrations Fil' NV, Fil'M,, and Fil’M as Lemma
3.19 (2). Note that D, has a structure of a Breuil module which corresponds to V. In particular,
we have a Frobenius ¢p, , a monodromy operator Np_and a decreasing filtration (Fil'D,,);cz on
D,,. Tt is a result of [Br, §6] that we can equip D := D,, /I, Sk, [1/p]D, with a structure of filtered
(¢, N)-module over K,, which corresponds to V. Now we recall the definition of this structure and
also define some additional notations for later use. The Frobenius ¢p and the monodromy Np on
D is defined by ¢p := ¢p, mod ISk, [1/p|D,, and Np := Np, mod ISk, [1/p|D,. We denote
by fr, and f, the natural projections D, — D, /Fil'Sk, D,, and D — D/Fil' Sk D, respectively.
There is a unique @-compatible section s: D < D of the projection D — D/ISk[1/p|D ~
D. Note that the composite D S > JEN D,,, which is also denoted by s, is a section of the
projection D,, — D,,/ ISk, [1/p]D,, = D. Since the composite D > D, Try D, /Fil' Sk, D,, (resp.
D 5 D 3 D/Fil' S D) maps a basis of D to a basis of D, /Fil' Sk, D, (resp. D/Fil' SxD), we
obtain an isomorphism Dy, = K, ®wx)1/p D = Dn/FillSKHDn (resp. D :== K @w(k)[1/p]
D 5 D/Fil'SkD). By this isomorphism, we identify Dy, (resp. Dx) with D, /Fil' Sk, D, (resp.
D/Fil' S D). Then the filtration (Fil'Dg, )icz on D over K, is given by Fil'Dg = f. (Fil'D,,).
We note that the filtered (¢, N)-module D over K,, defined above is weakly admissible since V is
semi-stable (see [CF, §3.4] for the definition of weakly admissibility).

Let Ok and Ok, be rings of integers of K and K, respectively. We note that there exists a
canonical isomorphism K, ®oy. fr, (Fil'M,,) ~ K, Roy, frn (Fil'’V) since we have p°Fil’M,, C
Fil'A’ C Fil'M,, as submodules of D,,, where ¢ > 0 is an integer such that 9, /M is killed
by p°. On the other hand, the canonical isomorphism Sk, [1/p] ®s,[1/p] P =~ D, induces an
isomorphism Sk, ®g, Fil'M ~ Fil’M,, (cf. Lemma 3.19 (2)), and it gives an isomorphism O, ®0
fr(Fil'M) ~ f. (Fi'M,,). Furthermore, it follows from [Li2, Corollary 3.2.3] that a natural
isomorphism N[1/p] ~ D,, preserves filtrations, where Fil'(N'[1/p]) := (Fil'’A)[1/p]. This induces
K, ®o0y, fr,(Fil'N) ~Fil'Dg, . (Here, we remark that the argument of §3.2 of loc. cit. proceeds
even for p = 2.) Therefore, if we define a decreasing filtration (FiliDK)iGZ on Dg by Fil'Dg :=
K ®0, fx(Fil’M), then we have a canonical isomorphism

K, ®k Fil'Dg ~Fil'D . (3.3)
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Note that we know Dy = FilODK D) FillDK DD FilTHDK = 0. Now we recall that D is
weakly admissible as a filtered (¢, N)-module over K,,. It follows from ( 3.3) that D is also weakly
admissible as a filtered (¢, N)-module over K, and hence the action of Gk, on V extends to Gk
so that it is semi-stable over K. Therefore, we showed that the restriction functor Ry — Rs is
essentially surjective and this finishes a proof of Proposition 3.15.

3.4 C:no =C"
Now we are ready to complete a proof of Theorem 2.6. We put Ky~ = Uizo K((pi) and Gpe =

Gal(KooKp~ /| Kp~) C Gg. We fix a topological generator 7 of Gp. We start with the following
lemma.

Lemma 3.20. (1) The field Kpe N Ko coincides with K or K.
(2) If (p,mo) # (2,1), then Ko N Koo = K.
(3) If m > 2, then Kpe N Koo = K.

Proof. The assertions (1) and (2) are consequences of [Li2, Lemma 5.1.2] and [Li3, Proposition
4.1.5], and so it is enough to show (3). We may assume p = 2. Assume that K, N Ko # K. Then
we have Kpe N Ko = K7 by (1). Since K; is contained in K, we have K1 C K((ye) for £ > m
large enough. Since m > 2, the extension K((y¢)/K((am) is cyclic and thus there exists only one
quadratic subextension in it. By definition of m, the extension K ({am+1)/K ((am ) is degree 2. Since
the extension K;/K is totally ramified but K((am)/K is unramified, we see that the extension
K1(Com)/K((om) is also degree 2. Therefore, we have Kj((om) = K((3m+1), and then we have
m1 = x(ym+1 +y with 2,y € K((am). Let o be a non-trivial element in Gal(K ({om+1)/K ({am)). We

have —m = o(m1) = 20 (Cam+1) +y = —2lom+1 +y. Hence w1 = x(om+1 and we have v(m) = v(x).
Here, v is a valuation of K ({ym+1) normalized by v(K*) = Z, and we see v(m) = 1/2. Since the
extension K ({om)/K is unramified, we have v(z) € Z but this is a contradiction. O

If (p,mo) = (2,1) and m = 1, we have mo = m and then Theorem 2.6 follows immediately from
Lemma 3.1. Hence we may assume (p,mg) # (2,1) or m > 2. Under this assumption, the above
lemma implies K,~NK, = K. In particular, we have G= Gpee X H g with the relation go = oX(9)g
for g € Hix and 0 € Gpe. Here, x is the p-adic cyclotomic character. Let M = (W,@,GK) be

an object of wMod;’gII: and put T' = TK(EfR) Our goal is to show that T is an object of CJ, .
We put D = Sk[l/p] ®p e, M and D = D/I,Sk([1/p|D. Let s: D — D be a p-equivariant
W (k)[1/p]-linear section of the projection D — D as before, and take a basis e1,...,eq of s(D).
In R @w)[1/p] S(D) = Ri @p,6, M, the T-action with respected to the basis ey, ..., eq is given
by 7(e1,...eq) = (e1,...,eq)A(t) for some matrix A(t) € GLy(W (k)[1/p][t]). Moreover, we have
Gk (s(D)) C (R N W (E)[1/p][t]) ®w (k)[1/p] 8(D) by [Lil, Lemma 7.1.3]. Here are two remarks.
The first one is that, the a-th power A(t)?, a matrix with coefficients in W (k)[1/p][t], of A(t) is
well-defined for any a € Z,,. This is because the Galois group G~ = 72 C Gk acts continuously
on Ri ®w(x)1/p S(D). The second one is that, for any g € Hy, we have A(x(g)t) = A(t)x(9) by

the relation g7 = 7X(9) g, In particular, we have
A9 = 1, (3.4)

Here, I is the identity matrix. With these notation, it follows from the second paragraph of the
proof of [Li3, Theorem 4.2.2] that T'®z, Q) is semi-stable over Ky if A(O)p[ =1,

Lemma 3.21. Let the notation be as above. Then we have A(0)?"" = I,.

Proof. First we consider the case where pis odd. Since H is canonically isomorphic to Gal(Kpe /K),
the image of the restriction to Hy of the p-adic cyclotomic character x: Gx — Z,; is equal to

X(Gg)=Cx (1+p"Z,)
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where n is a positive integer and C' ~ Gal(K({,)/K) is a finite cyclic group of order prime-to-p.
The case where mg > 1: In this case, it is an easy exercise to check the equality n = mg and hence
we can choose g € Hg such that x(g) = 1+ p™°. Thus the result follows by ( 3.4).
The case where mg = 0: In this case, C is non-trivial and hence there exists an element g € Hy
such that = := x(¢) — 1 is a unit of Z,. By ( 3.4), we have A(0)® = I;, and then we obtain
A(0) = 1.

Next we consider the case where p = 2.
The case where mg > 2: This case is clear since we have y(Hg) = x(Gg) = 1 + 20 Z;.
The case where mg = 1: In this case, y mod 4 is not trivial. Hence there exists g € Hg such that
x(g9) = 3 + 4z for some = € Zy. By ( 3.4), we have A(0)*t4* = I,;. Since 1 + 2z is a unit of Z,,
this gives the desired equation A(0)? = I,. O

By the above lemma, we obtain the fact that T'®z, Q, is semi-stable over K.,,. On the other
hand, we have already shown that C” is a subcategory of C},,. Thus there exists a semi-stable Q-
representation V' of G’ whose restriction to G'x,, is isomorphic to T'®z, Q,. Moreover, Proposition
2.8 implies that V' and T'®z, Q, are isomorphic as representations of G Ky, SINCE they are semi-
stable over K,,,. Therefore, we conclude that 7' is an object of the category Cy, . This is the end
of a proof of Theorem 2.6.

3.5 Conclusions and more

3.5.1

We summarize our results here. For any finite extension L/K, we denote by Rep%’pL'St(G k) the

category of free Z,-representations 1" of Gk which is semi-stable over L with Hodge-Tate weights
in [0,7]. We define C], to be the category of free Z,-representations T of Gk which satisfies the
following property: there exists a semi-stable Q,-representation V' of Gk with Hodge-Tate weights
in [0, 7] such that T'®z, Q, is isomorphic to V as representations of G, . By definition CJ, is a full
subcategory of Rep%’pK"'St(GK). Put mg = max{i > 0| ¢, € K} and m = max{i > 0| ¢, € K"}
We have Rep%’pK"L—St (Gk) = U0 Repg’pK"'St (Gk), C, = U,>0Cr, (see Remark 2.5). Results of

2

[Li3] and this note give the following diagram (here, “C” implies an inclusion):

cr, <. RepngWSt (Gk)

U UT
WMOd;’GGA;: :V C;zo - Rep;KTno'St (GK)
Tk P
UT U UT
r,@K ~ r r,K-st
Modygd —— —— G4 Repy, "™ (Gx)

3.5.2

We give a few remarks for the above diagram. Clearly, all the categories in the middle and right
vertical lines are same if m = 0. On the other hand, if m > 1, inclusion relations between them
are described as follows:

Proposition 3.22. Suppose m > 1.
(1) Suppose 1 < n < m. Then the category Cl is strictly larger than C

T _1- In particular, the
category Rep%’:{”'St (Gk) is strictly larger than Repg’:{”’_l_St(GK).

(2) Suppose n,r > 1. Then the category RepQPK’"St

(3) Suppose n > 0. Then we have C = RepﬂZJ’pK"'St (Gk).

(Gk) is strictly larger than CF.
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Proof. (1) Let T be the induced representation of the rank one trivial Z,-representation of G K (Cpn)
to Gk, which is an Artin representation. The splitting field of T" is K, ({pn). Since n < m, the
extension K, (¢yn)/K, is unramified. Thus T is crystalline over K,. On the other hand, T is
not crystalline over K,_; since the extension K, ({n)/K,—1, the splitting field of T'|k, ,, is not
unramified. (This finishes a proof of the latter assertion.) Let pr: Gx — GLz,(T) ~ GL4(Z,) be
the continuous homomorphism associated with 7', where d is the Z,-rank of T'. By the assumption
n < m, we know that K({») N K, = K and thus we can define a continuous homomorphism
pr: Gk — GLq(Z,) by the composite Gx — Gal(K({pn)/K) ~ Gal(K,(¢pn)/Ky) N GL4(Zy).
Let T” be the free Z,-module of rank d equipped with a G g-action by prs. Then T” is isomorphic
to T as representations of Gk, and furthermore it is crystalline over K. It follows that 7" is an
object of C;.

(2) Since m > 1, we know that L := K((,) is an unramified extension of K. Thus 7x is a uni-
formizer of L. Consider notations &, Sy, ... (resp. &r,,SL,,...) with respect to the uniformizer
mx (resp. mr,1) of L (resp. L1) and the system (g n)n>0 (resp. (T n+1)n>0). Let 9 be the
rank-2 free Kisin module over &, of height 1 given by ¢(e1,e2) = (e1, e2) ((1) ELU(LJL )>, where

1 1

{e1,ea} is a basis of M. Since M is of height 1, there exists a G, -stable Z,-lattice T" in a crystalline
Qp representatlon of G, coming from a p—d1v151ble group over the 1nteger ring of L;. We see that
T := Ind K T is crystalline over Lq. Since L; is unramified over Ki, T is in fact crystalline over

K. Furthermore, T does not come from Kisin modules over G (that is, T'|¢ ., 18 not isomorphic
to T . (M) for any Kisin module M over &). To check this, it suffices to show that 7" does not
come from Kisin modules over G. Essentially, this has been already shown in [Li3, Example
4.2.3]. Therefore, Corollary 3.16 implies that T is not an object of Cr.

(3) We may suppose n < m. Take any object T of Rep%pK"'St (Gk). Since T has only one Hodge-
Tate weight zero, the condition T'|g,, is semi-stable implies that T'|q,. ~is unramified. Thus if we
denote by K the splitting field of T, then KK, is unramified over K.

First we consider the case where K1 contains (p». In this case, we follow the idea given in
the proof of (1). Denote by K’ the maximum unramified subextension of Kr K, over K. Since
Kp contains (pn, KrK,/K is a Galois extension and hence K'/K is also Galois. Furthermore,
it is not difficult to check that the equality K7+ K, = K'K, holds. Let pr: Gx — GLz,(T) ~
GL4(Z,) be the continuous homomorphism associated with T', where d is the Z,-rank of T', and
define a continuous homomorphism pp/: Gx — GL4(Z,) by the composite Gx — Gal(K'/K) ~

Gal(Kr K, /Ky) N GL4(Z,). Let T' be the free Z,-module of rank d equipped with a Gk-action
by prs. Then T is isomorphic to T as representations of G, and furthermore, 7" is crystalline
over K. It follows that T is an object of CJ.

Next we consider the general case. Denote by Tp the induced representation of the rank one
trivial Zy-representation of G (¢,.) to Gx. We define a free Z,-representation T of Gk by T :=
T ®Ty. The splitting fields of T and T are equal to Kz = Kp(({pn) and K((pn ), respectively. The
representations T and T} are objects of Rep0 Kn-st (Gk). Moreover, the above argument implies
that T and Ty are contained in Cg. Therefore, there exist objects 9N and Ny of Mod?GK such that
Te . (M) = T|GKOO and T . (Mo) = Tolg ., - Now we recall that the functor T, is fully faithful. If
we denote by §: My — M a (unique) morphism of p-modules over &k corresponding to the natural
projection T — Ty, then we obtain a split exact sequence 0 — Mgy L9 oM = 0of p-modules
over S . Here, M is the cokernel of f, which is a finitely generated & x-module. Since 9 is a direct
summand of 9, it is a projective & g-module. This implies that 9 is a free & g-module. (Note

that, for a finitely generated & g-module, it is projective over S if and only if it is free S by
Nakayama’s lemma.) Furthermore, 91 is of height 0 and hence it is an object of Mod(/)GK. Since the

functor T, is exact, we obtain T, (9) = ker(Ts . (M) lgf) Te, (M) = ker(T — Ty) = T.
Therefore, T is an object of CY by Corollary 3.16. O
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3.5.3

Assume that m > 1. Let n > 1 be an integer and 7" an object of the category C;,. By definition
of C, we have a (unique) semi-stable Q,-representation Vy of G with the property that it is
isomorphic to T' ®z, Q) as representations of G . It is not clear whether T' is stable under the
G i-action of Vp for any T' or not. Such a stability problem of Galois actions may sometimes cause

obstructions in integral theory, and so the following question should be naturally considered.
Question 3.23. Let the notation be as above. Does the G g-action of Vi preserves T for any T'7
We end this paper by showing an answer to this question.

Proposition 3.24. (1) If r =0, then Question 3.23 has an affirmative answer.

(2) If r > 1, then Question 3.23 has a negative answer.

(8) Let the notation be as above. Suppose e(r — 1) < p — 1 where e is the absolute ramification
index of K. If T is potentially crystalline, then the Gk -action of Vi preserves T. Moreover, any
Gk -stable Zy-lattice of Vr is stable under the Gk -action.

Proof. (1) (This is a special case of (3).) The result easily follows from the fact that T as in the
question is unramified in this case, and that Gk, and the inertia subgroup of G generate G .

(2) Our goal is to construct an example which gives a negative answer to the question. First we
consider the case where 1 < n < mg. Let E, be the Tate curve over K associated to m. Choose
a basis {e, f} of the p-adic Tate module V' = V,(E;) of E, such that the Gg-action on V with

respective to this basis is given by
x(9)  (g)
g ( (o) <)),

Here, x: Gk — Z, is the p-adic cyclotomic character and c¢: Gk — Z, is a map defined by
9(mr ) = g;ﬁg)mg for any g € G and £ > 1. Let Ty be the free Z,-submodule of V' generated

by p"e and f. This is Gk, -stable but not G x-stable in V. Now we put 1" = Indgi T, and choose

a set S C G of representatives of the quotient G /G, . Since K, /K is Galois, T|GK" is of the
form ®ycs5 To,». Here, Tp , is just Ty as a Zy-module and is equipped with a o-twisted Gk, -action,
that is, g.x := (07 'go)(x) for g € Gk, and z € Ty,. We define elements e, and f, of Ty, by
e, :=p"e and f, := f. We define Vp, := Ty, ®z, Qp and extend the G, -action on Vy, to Gk

by
- (9) clo™'go)/p"
g(eq.f5) = (e0.f5) (Xog i )

for g € Gk. By definition the Gg-action on V;, does not preserve Ty ,. It is not difficult to
check that Vj, is a semi-stable Q,-representation of Gx with Hodge-Tate weights {0,1}. If we
put Vr = ®5cs5V0,», then we have the followings:

e Vr is semi-stable over K with Hodge-Tate weights {0, 1},
e the natural isomorphism Vi ~ T ®;, Q, is compatible with Gk, -actions, and
e the G-action on Vr does not preserve T'.

This gives a negative answer to Question 1.1 in the case 1 < n < my.

Next we consider a general case. We may suppose n = m. Put K’ = K((pm) and K|, = K, K'.
Then K’ is an unramified Galois extension of K and max{i > 0 | (,; € K'} = m. Thus the
above argument shows that there exists a free Z,-representation T” of Gk and a semi-stable

Q,-representation Vs of Gk with Hodge-Tate weights {0,1} which satisfies the followings:
e there exists an isomorphism Vp ~ T @z, Qp of Gk -representations, and

e the Gis-action on Vi does not preserve T".
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We regard T" as a Zy-lattice of V. We define T := IndGK T and Vp = IndG V. Note
that T is naturally regarded as a Zp-lattice of V. By deﬁnltlon the Ggr-action on VT does not
preserve T'. In particular, the same holds also for the Gi-action. Since K'/K is unramified, we see
that Vp is semi-stable over K. Furthermore by Mackey’s formula, we have natural isomorphisms

T ®z, Qp ~ IndGK'" (T" ®z, Qp) ~ Ind. K'" Vi ~ Vp of representations of Gk, . Therefore, we

conclude that Questlon 3.23 has a negatlve answer for any n > 1.
(3) This is a special case of [Oz, Corollary 4.20]. O
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