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Abstract

Let K be a complete discrete valuation field of mixed characteristic (0,p) with per-
fect residue field. Let (mn)n>0 be a system of p-power roots of a uniformizer 7 = o of
K with WfLH = 7y, and define G (resp. Goo) the absolute Galois group of K(ms) (resp.
Koo :=J,;50 K(mn)). In this paper, we study Gs-equivariantness properties of Goo-equivariant
homomorphisms between torsion crystalline representations.
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1 Introduction

Let p be a prime number and r > 0 an integer. Let K be a complete discrete valuation field of
mixed characteristic (0, p) with perfect residue field and absolute ramification index e. Let m = mg
be a uniformizer of K and m, a p"-th root of 7 such that «}  , = m, for all n > 0. For any
integer s > 0, we put K, = K(ms). We also put Koo = {J,,~g Kn). We denote by G, G, and
G absolute Galois groups of K, K () and K, respectively. By definition we have the following
decreasing sequence of Galois groups:

Grk=Gy DG DGyD DGy

Since K is a strict APF extension of K, the theory of fields of norm implies that G, is isomorphic
to the absolute Galois group of some field of characteristic p. Therefore, representations of G, have
easy interpretations via Fontaine’s étale p-modules. Hence it seems natural to pose the following
question:

Question 1.1. Let T be a Z,- or Q,-representation of Gx. How small can we choose s > 0 to
recover “enough” information of T|q, from that of T|c_. ¢

Nowadays there is an interesting insight of Breuil for this question; he showed that representations
of Gk arising from finite flat group schemes or p-divisible groups over the integer ring of K is
“determined” by their restriction to G. Furthermore, for QQ,-representations, Kisin proved the
following theorem in [Kis] (which was a conjecture of Breuil): the restriction functor from the
category of crystalline Q,-representations of Gk into the category of Q,-representations of G is
fully faithful.

In this paper, we give some partial answers to Question 1.1 for torsion crystalline representa-
tions. A torsion Z,-representation T' of G is torsion crystalline with Hodge-Tate weights in [0, 7]
if it can be written as the quotient of lattices in some crystalline Q,-representation of Gx with
Hodge-Tate weights in [0,7]. Let Rep|:>™*(Gx) be the category of them. In the case 7 = 1, such
representations are equivalent to finite flat representations. (Here, a torsion Z,-representation of
G is finite flat if it arises from the generic fiber of some p-power order finite flat commutative
group scheme over the integer ring of K.) We denote by Rep,,,(Goo) the category of torsion
Zy-representations of G,. The first main result in this paper is as follows.

Theorem 1.2 (Full Faithfulness Theorem). Suppose e(r —1) <p—1. Then the restriction functor
Repiar " (Gr) = Repyo, (Goo) 48 fully faithful.

Before this work, some results were already known. First, the full faithfulness theorem was proved
by Breuil for e = 1 and » < p — 1 via the Fontaine-Laffaille theory ([Br2], the proof of Théorém
5.2). He also proved the theorem under the assumptions p > 2 and r < 1 as a consequence of
a study of the category of finite flat group schemes ([Br3, Theorem 3.4.3]). Later, his result was
extended to the case p = 2 in [Kim)], [La], [Li4] (proved independently). In particular, the case
p = 2 of the full faithfulness theorem is a consequence of their works. On the other hand, Abrashkin
proved the full faithfulness in the case where p > 2,7 < p and K is a finite unramified extension
of Q, ([Ab2, Section 8.3.3]). His proof is based on calculations of ramification bounds for torsion
crystalline representations. In [Oz2], a proof of Theorem 1.2 under the assumption er < p — 1
is given via (¢, G)-modules (which was introduced by Tong Liu [Li2] to classify lattices in semi-
stable representations). We should remark that Abrashkin’s approach implies that calculations of
ramification bounds induces full faithfulness results on restriction functors such as our theorems.
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However, known results on ramification bounds for torsion crystalline representations are not
sufficient to obtain our results. Conversely, our results possibly help us to study ramification
bounds for them.

Our proof of Theorem 1.2 is similar to the proof for the main result of [0z2], but we need more

careful considerations for (¢, G)-modules. In fact, we prove a full faithfulness theorem for torsion
representations arising from certain classes of (¢, G)-modules (cf. Theorem 4.9), which immediately
gives our main theorem. In addition, our study gives a result as below which is the second main

result of this paper (here, we define log,(x) := —oo for any real number z < 0).

Theorem 1.3. Suppose that p is odd and s > n — 1+ log,(r — (p — 1)/e). Let T and T" be

T,cris

objects of Reps,  (Gx) which are killed by p™. Then any Go-equivariant homomorphism T — T’
is G s-equivariant.

For torsion semi-stable representations, a similar result was shown in Theorem 3 of [CL2], which
was a consequence of a study of ramification bounds. The bound appearing in their theorem was
n—1+log, (nr). By applying our arguments given in this paper, we can obtain a generalization of
their result; our refined condition is n — 1 +log,r (see Theorem 4.17). Some other consequences of
our study are described in subsection 4.7. Motivated by the full faithfulness theorem (= Theorem
1.2) and Theorem 1.3, we raise the following question.

Question 1.4. Does there exist a constant ¢ depending on e,r and p so that any G -equivariant
homomorphism in the category Repiar (G ) is Gs-equivariant for s > ¢ Moreover, can we choose
c to belog,(r—(p—1)/e)?

On the other hand, there exist counter examples of the full faithfulness theorem when we ignore
the condition e(r —1) < p—1. Let Rep,,,(G1) be the category of torsion Z,-representations of G1.

Theorem 1.5 (= Special case of Corollary 5.15). Suppose that K is a finite extension of Q,, and
also suppose e | (p—1) or (p—1)|e. Ife(r —1) > p— 1, the restriction functor Repin - (Gr) —

. tor
7,cris

Repior (G1) is mot full (in particular, the restriction functor Repy .~ (Gk) — Repio,(Goo) s not
full).

In particular, if p = 2, then the full faithfulness never hold for any finite extension K of Q. and
any r > 2. Theorem 1.5 implies that the condition “e(r — 1) < p —1” in Theorem 1.2 is optimal
for many finite extensions K of Q.

Now we describe the organization of this paper. In Section 2, we setup notations and summarize
facts we need later. In Section 3, we define variant notions of (¢, G)—modules and give some basic
properties. They are needed to study certain classes of potentially crystalline representations and
restrictions of semi-stable representations. In Section 4, we study technical torsion (¢, G’)—modules
which are related with torsion (potentially) crystalline representations. The key result in this
section is the full faithfulness result Theorem 4.9 on them, which allows us to prove our main
results immediately. Finally, in Section 5, we calculate the smallest integer r for a given torsion
representation T' such that T" admits a crystalline lift with Hodge-Tate weights in [0, 7]. We mainly
study the rank two case. We use our full faithfulness theorem to assure the non-existence of
crystalline lifts with small Hodge-Tate weights. Theorem 1.5 is a consequence of studies of this

section.

Acknowledgements. The author would like to thank Shin Hattori, Naoki Imai and Yuichiro
Taguchi who gave him many valuable advice. The author is grateful to the anonymous referee for
his/her comments. This work was supported by JSPS KAKENHI Grant Number 25-173.

Notation and convention: Throughout this paper, we fix a prime number p. Except in Section
5, we always assume that p is odd.

For any topological group H, we denote by Rep;,(H) (resp. Repy (H), resp. Repg (H)) the
category of torsion Z,-representations of H (resp. the category of free Z,-representations of H,
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resp. the category of Qp-representations of H). All Z,-representations (resp. Q,-representations)
in this paper are always assumed to be finitely generated over Z, (resp. Q,) and continuous.

For any field F', we denote by G the absolute Galois group of F' (for a fixed separable closure
of F).

2 Preliminaries

In this section, we recall definitions and basic properties for Kisin modules and (¢, é)—modules.
Throughout Section 2, 3 and 4, we always assume that p is an odd prime.

2.1 Basic notations

Let k be a perfect field of characteristic p, W (k) the ring of Witt vectors with coefficients in k,
Ko = W(k)[1/p], K a finite totally ramified extension of K of degree e, K a fixed algebraic closure
of K. Throughout this paper, we fix a uniformizer 7 of K. Let E(u) be the minimal polynomial of
7 over Ko. Then E(u) is an Eisenstein polynomial. For any integer n > 0, we fix a system (75, )n>0
of p"-th roots of m in K such that Thi1 = Tn. Let R = %iLn(’)?/p, where O is the integer ring
of K and the transition maps are given by the p-th power map. For any integer s > 0, we write
Ts = (Ts4n)n>0 € R and 7 := my € R. Note that we have &”S =.

Let L be the completion of an unramified algebraic extension of K with residue field kj.
Then 7, is a uniformizer of L, := L(m,) and L) is a totally ramified degree ep® extension of
Lo := W(kz)[1/p]. We set Loo := U0 Ln)- We put G := Gr,) = Gal(L/ L)) and G, o =
Gr. = Gal(L/Ls). By definitions, we have L = Ly and Gpo = Gr. Put &1 s = W(kp)[us]
(resp. 6 = W(kr)[u]) with an indeterminate ug (resp. u). We equip a Frobenius endomorphism
¢ of & s (resp. &) by us — u? (resp. u — uP) and the Frobenius on W(kr). We embed the
W (kg )-algebra W (kp)[us] (resp. W (kp)[u]) into W(R) via the map us — [mg] (resp. u — [x]),
where [] stands for the Teichmiiller representative. This embedding extends to an embedding
Grs = W(R) (resp. &1 — W(R)). By identifying u with u?", we regard &, as a subalgebra of
GS1s. It is readily seen that the embedding &y — &1, s — W(R) is compatible with the Frobenius
endomorphisms. If we denote by E;(us) the minimal polynomial of 7g over Ky, with indeterminate
us, then we have E,(us) = E(u?’). Therefore, we have E,(u,) = F(u) in &1, ;. We note that the
minimal polynomial of 75 over Lg is Fs(us).

Let SP¢, (resp. S7)) be the p-adic completion of the divided power envelope of W (kr)u.]
(resp. W(kr)[u]) with respect to the ideal generated by E(us) (resp. E(u)). There exists a unique
Frobenius map ¢: SP . — SP  (resp. ¢: S — SP) and monodromy N: SP - — S  defined
by (us) = u? (resp. p(u) = uP) and N(us) = —u, (resp. N(u) = —u). Put Sp, 5 = SPe_[1/p] =
Lo ®w (k) SiL’“OﬁS (resp. Sp, = Siﬁf[l/p] = Lo ®w (k) Sfot) We equip SElOt,S and S, s (resp. S’E“Ot
and Sr,) with decreasing filtrations FilﬁS’E};S and Fil'Sy, . (resp. FiliSE‘(iS and Fil'Sy, ) by the
p-adic completion of the ideal generated by FJ(us)/j! (vesp. E?(u)/j!) for all j > 0. The inclusion
W (kp)[us] = W(R) (resp. W(kr)[u] — W (R)) via the map us — [m;] (resp. u — [x]) induces

p-compatible inclusions &, 5 — Sgg’s — Acris and S s — B:;is (resp. 6 — Sanot — Auis and
Sr, < Bt
8]

T..)- By these inclusions, we often regard these rings as subrings of B, . By identifying
u with u?  as before, we regard SP** (resp. Si,) as a @-stable (but not N-stable) subalgebra of

S%lot’s (resp. SL,.s). By definitions, we have & = &, g, SiL“Ot)O = Sfot and Sp,0 = SL,-

Convention: For simplicity, if L = K, then we often omit the subscript “L” from various notations
(e.g. GKS = Gs, GKoo = Goo, GK = G,G[gs = 63).
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W(R) Acris B
Sr. SEe SLo,s
<7) S SLo
S, SR ——— SKo.s
S - %
S St Sko

Figure 1: Ring extensions

2.2 Kisin modules

Let r, s > 0 be integers. A @-module over &, 5 is an &, s-module I equipped with a p-semilinear
map ¢: M — M. A morphism between two p-modules (M1, 1) and (My, p2) over &, 5 is an
&1 s-linear map My — My compatible with ¢; and 3. Denote by Mod/G the category of
- modules (M, ) over &, s of height < r in the sense that 9N is of finite type over &1, s and the
cokernel of 1 ® ¢: & s ., , M — M is killed by £, (u,)".

Let Mod)g, . be the full subcategory of 'Modg, , consisting of finite free &1, s-modules. We
call an object of Mod/GL a free Kisin module of height < r (over & s).

Let Mod’, /61 be the full subcategory of 'Mod’) /&, , consisting of finite &1, s-modules which
are killed by some power of p and have projective dimension 1 in the sense that E)ﬁ has a two term
resolution by finite free &, s;-modules. We call an object of MOd/GL,S,m a torsion Kisin module of
height <1 (over & 5).

For any free or torsion Kisin module 9t over &, 5, we define a Z,[G 1, «]-module T,  (9N) by

T, (M) == Home,, , (O, W(R)) if M is free,
Sr,s | Home, , (M, Q,/Z, ®z, W(R)) if M is torsion.

Here a G -action on T, ,(9M) is given by (0.g)(z) = o(g(x)) for 0 € GL 00,9 € Te (M), r € M.

Convention: For simplicity, if L = K, then we often omit the subscript “L” from various notations
(e.g. Mod)g, = Mod)s, , Ts,,=Ts, ). Also,if s =0, we often omit the subscript “s”
from various notations (e.g. Mod)s, , = Mod)s, , Ts,, = Ts,, Mod)g, , = = Mod)s_,
Tex, =Ts ).

Proposition 2.1. (1) ([Kis, Corollary 2.1.4 and Proposition 2.1.12]) The functor T, . : Mod)s, = —
Repy, (Gwo) is exact and fully faithful.

(2) (fCLl, Corollary 2.1.6, 3.3.10 and 3.3.15]) The functor Ts, ,: Mod)s,  _ — Repy, (Goo) is
exact and faithful. Furthermore, it is full if er < p — 1.

2.3 (p,G)-modules

The notion of (¢, G’)-modules are introduced by Tong Liu in [Li2] to classify lattices in semi-stable
representations. We recall definitions and properties of them. We continue to use same notations
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as above.

Let Ly be the field obtained by adjoining all p-power roots of unity to L. We denote by L
the composite field of Lo, and Ly~. We define Hy, := Gal(L/Ly.), Hy o := Gal(K/L) Gp pe =
Gal(i//[/poo) and G, := Gal(ﬁ/L). Furthermore, putting L(y) e = L(s)Lp=, we define GL)S =
Gal(L/Ls)) and Gp s pe := Gal(L/ L) pe)-

L

Figure 2: Galois groups of field extensions

Since p > 2, it is known that L) e N Loo = L) and thus Grs = G ape x Hp o (cf. [Lil,
Lemma 5.1.2]). Furthermore, G, 5 po is topologically isomorphic to Z,,.

Lemma 2.2. The natural map G spe~ — G s p~ defined by g — g|z is bijective.

Proof. By replacing L, with L, we may assume s = 0. It suffices to prove Kn Ly = Kpe. Since
G g p is isomorphic to Z,, we know that any finite subextension of K/Kpm is of the form K4 ;e
for some s > 0. Assume that we have K N Ly # Kp~. Then we have Ky C KN Ly C Lye.
Thus m; is contained in Ly~ N Lo, = L. However, since L is unramified over K, this contradicts
the fact that m is a uniformizer of L. O

We fix a topological generator 7 of Gk p. We also denote by 7 the pre-image of 7 € G peo
under the bijection G, peo ~ G peo of the above lemma. Note that 7 is a topological generator
of GL“g’poo .

For any g € Gk, we put e(g9) = g(7)/m € R, and define ¢ := ¢(7). Here, T € G is any lift
of 7 € Gk and then £(7) is independent of the choice of the lift of 7. With these notation, we
also note that we have g(u) = [g(g)]u (recall that & is embedded in W(R)). An easy computation
shows that 7(x)/x = 77" (7s)/ms = £. Therefore, we have 7(u)/u = 70" (us) /us = [g].

We put t = —log([g]) € Aeris. Denote by v: W(R) — W (k) the unique lift of the projection
R — k, which extends to a map v: BY, — W (k)[1/p]. For any subring A C B, , we put [, A =

Ker(v on Bf, )N A. For any integer n > 0, let t{"} := tT(”)'yq(n)(§) where n = (p—1)§(n)+r(n)

with g(n) >0, 0 <r(n) < p—1and y(x) = f—,l is the standard divided power. We define a subring
RiLo,s (resp. Rr,) of BT

s as below:

Rrig,s = {Z fit' | fi € Spys and f; — 0 as i — oo}
=0

(resp. Rrp, := {Z fitt | f; € Sp, and f; — 0 as i — oo}).
=0
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Put Ry . = Riy.e N W(R) (vesp. R, = Rp, "W (R)) and Iy o = I, Ry (resp. I 1 = [, Rp).
By definitions, we have Rp,0 = Rr,, 7/@1;0 = ﬁL and Iy 1o = I; ;. Lemma 2.2.1 in [Li2]
shows that ﬁLS (resp. Rr,.s) is a p-stable &, s-subalgebra of W(R) (resp. B, ), and v induces
Rigs/IiRegs = Lo and Ry /Ly 1,5 = SP /ISP ~ &1, /1,61, ~ W(kg). Furthermore,
7%,;78,I+7L,3,RL073 and I, Ry, s are G s-stable, and G, s-actions on them factors through CA?L,S.
For any torsion Kisin module 9t over &, ¢, we equip ﬁL’S Rp,&,., MM with a Frobenius by PR, . ®
pon- It is known that the natural map 9t — ﬁL’S Rp.e,., M given by z — 1 ® z is an injection
(cf. [Oz1, Corollary 2.12]). By this injection, we regard 9 as a p(&y ;)-stable submodule of

RL,S ®<P76L,s m.

Definition 2.3. A free (resp. torsion) (o, G1 s)-module of height < r over &, , is a triple 9 =
(M, oon, Gr,s) where
(1) (9, o) is a free (resp. torsion) Kisin module of height < r over &, 5,

(2) G, is an Ry s-semilinear G, s-action on Ry s ®y &, , M which induces a continuous G s-
action on W(FrR) ®,,a, , M.

(3) the CAJLVS—action commutes with Yr, @ pm,
(4) MC (Rps Dps,, ML,
(5) Gps acts on the W (ky)-module (R s @p.&, . M)/Is 1.s(Ris @pe, . M) trivially.

A morphism between two (@,GL,S)-modules M, = (Emhgphé) and My = (93127@2,61') is

a morphism f: M; — My of p-modules over &y, such that 7%,;,3 ® f: ﬁL,s Rp,e.., M1 —
ﬁLys Ry, My is GLyf—equivariant. We denote by Mod;gLLs (resp. 1\/Iod;’C_C’YVLL”:pﬁ
free (resp. torsion) (¢, G s)-modules of height < r over &1, . We often regard Rp s ®, &, , M as

) the category of

a G s-module via the projection G, s — G’L’S.

For any free or torsion (¢, Gz, ;)-module M over & ., we define a Z,[G, ]-module T7, ,(90)
by

HomﬁL,s,cp(,lELaS Ry, MW(R)) if 9 is free,

Ty (M) =
L,s(M) { Homp — (Ris ®pep. M Qp/Zp @z, W(R)) if 9 is torsion.

Here, G, acts on Tp ,(9M) by (0.f)(x) = o(f(o"(2)) for 0 € Grs, f € T (M), z €
RL,s X,& 1, m.
Then, there exists a natural G -equivariant map

9L,s¢ T@st (E)ﬁ) — TL,s(i)jt)

defined by 0(f)(a ® ) = ap(f(z)) for f € Ts, (M), a € ﬁL’Sw € M. We have

Theorem 2.4 ([Li2, Theorem 2.3.1 (1)], [CL2, Theorem 3.1.3 (1)]). The map 01, s is an isomor-
phism of Z,[GL o ]-modules.

Convention: For simplicity, if L = K, then we often omit the subscript “L” from various no-
tations (e.g. “y (go,CAv'K,s)—module” — gy (go,(?s)—module”, MOdT,GK,s _ Modr,Gs Modr,GK,s _

. /G K, s /67 /S K, s 00
Mod;’gs , TAKS = TS, Okxs = 05). Furthermore, if s = 0, we often omit the subscript “s”
from \iarious notat%ons (e.g. Mod;gf‘f = Mod;’gLL, Mod;’gf";’m = Mod;’g;w, Tro = Tr,
Mod;’gfjﬁ = Mod;’g “a (p, éK,o)-module” = “a (¢, G')—module”, TK’O =T, Oro=20).
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Let Repgzt(GLs) (resp. Rep&iris(GLS), resp. Repg’st(GLys), resp. Repg;ris(GLys)) be the cate-
gories of semi-stable Q,-representations of G s with Hodge-Tate weights in [0, 7] (resp. the cat-
egories of crystalline Q,-representations of G, s with Hodge-Tate weights in [0, r], resp. the cate-
gories of lattices in semi-stable Q,-representations of Gy, s with Hodge-Tate weights in [0, r], resp.
the categories of lattices in crystalline Q,-representations of Gy s with Hodge-Tate weights in
[0, 7]).

There exists t € W(R)~ pW (R) such that ¢(t) = pE(0) "1 E(u)t. Such tis unique up to units of

Zy (cf. [Li2, Example 2.3.5]). Now we define the full subcategory Mod;’g’cris (resp. Mod?’g;:ris) of

Mod;’g (resp. Mod;’gm) consisting of objects 9 which satisfy the following condition; T(x)—x €
uPo(t)(W(R) ®p,e M) for any € M.
The following results are important properties for the functor TL,S.

Theorem 2.5. (1) ([Li2, Theorem 2.3.1 (2)]) The functor T' induces an anti-equivalence of cate-

gories between Mod;’g and Rep%’jt(GK).
(2) (|GLS, Proposition 5.9], [0z2, Theorem 19]) The functor T induces an anti-equivalence of

r,cris

categories between Mod;’g’cris and Repy ™" (G k).

(3) ([Oz1, Corollary 2.8 and 5.34]) The functor T, : Modjgf’:m — Repio;(GL.s) is exact and
faithful. Furthermore, it is full if er < p — 1.

~

2.4 (p,G)-modules, Breuil modules and filtered (¢, N)-modules

We recall some relations between Breuil modules and (¢, G’)—modules. Here we give a rough sketch
only. For more precise information, see [Brl, Section 6], [Lil, Section 5] and the proof of [Li2,
Theorem 2.3.1 (2)].

Let 9 be a free (cp,(?Lys)—module over & ,. If we put D := Sr,,s ®p,&, . M, then D has
a structure of a Breuil module over Sp, s which corresponds to the semi-stable representation
Qp ®z, Tr,.«(9M) of Gy ¢ (for the definition and properties of Breuil modules, see [Brl]). Thus
D is equipped with a Frobenius op(= ¢s,, . ® pm), a decreasing filtration (Fil'D);>0 of Sp, s
submodules of D and a Lg-linear monodromy operator IN: D — D which satisfy certain properties
(for example, Griffiths transversality).

Putting D = D/I, S, D, we can associate a filtered (¢, N)-module over L, as following:
¢p = ¢p mod 1.5, D, Np := Np mod I.Sr, D and FiliDL(S) = fr.(Fil*(D)). Here,
Jr,: D — D is the projection defined by D — D/FillSLmsD ~ Dy,,,. Proposition 6.2.1.1
of [Brl] implies that there exists a unique @-compatible section s: D < D of D — D. By
this embedding, we regard D as a submodule of D. Then we have Np|p = Np and Np =
Ng,, . ®@ldp +1ds, , ® Np under the identification D = Sr, s @, D.

The G s-action on Rp s @y, , M extends to BT ®z, . (ﬁL,S Rp,ep., M) ~ B:;is ®sp,. D-

s cris
This action is in fact explicitly written as follows:

gla®x) = Zg(a)%(—log(g[& )) ® Nh(z) for g€ Gpg,a€ Bl ,x€D. (2.4.1)

P [&] cris?

By this explicit formula, we can obtain an easy relation between Np and 77 -action on M as
follows: first we recall that t = —log(7([x])/[x]) = —log(7?" ([rs])/[rs]). By the formula, for any
n > 0 and = € D, an induction on n shows that we have

s n m! m
(" = 1)"(z) = Z( Z W)’Ym(t) ® Np'(z) € By ®s,,,. D
M=n i)+ ip=m,i; >0 "
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and in particular we see W(az) — 0 p-adically as n — co. Hence we can define

n—1 (Tps — 1>n

n (LL') € B::is ®SLO,5 D.

log(r?")(z) == ) (~1)

It is not difficult to check the equation

log(7P") () = t ® Np(x). (2.4.2)

2.5 Base changes for Kisin modules

Let 9 be a free or torsion Kisin module of height < r over &, (resp. over &). We put My , =
G 5@, M (resp. 61, = G, RsM) and equip My, 5 (resp. M) with a Frobenius by ¢ = vg, , @pom
(resp. ¢ = e, ® won). Then it is not difficult to check that My s (resp. M) is a free or torsion
Kisin module of height < r over &, (resp. over &) (here we recall that F,(us) = E(u2") = E(u)).
Hence we obtained natural functors

Mod?GL — Modygm and MOd;GL,w — MOd;GL,s,oo

(resp. Mod)g — Mod)g, and Mod)s_  — Mod)g, ).

By definition, we immediately see that we have T, (M) ~ Ts, (M) (vesp. Te(M)|g, =~
Ts, (Mr)). In particular, it follows from Proposition 2.1 (1) that the following holds:

Proposition 2.6. The functor Mod)g, — Mod)g, s fully faithful.

~

2.6 Base changes for (p, G)-modules

Let 9 be a free or torsion (i, Gz, )-module (resp. (¢, G)-module) of height < 7 over &, (resp. over

~

G). The G s action on Ry ®yp.e, M (resp. the G, action on R Ry, M) extends to ﬁgs Qp,
(Ry R, M) ~ ﬁL,s Rp.ep., Mr,s (resp. Ry ®zn (R Rp,e M) ~ Ry ®p,, Mr), which factors
through G’L,s (resp. G’L) Then it is not difficult to check that My s (resp. M) has a structure of
a (p,Gp.s)-module (resp. (¢, Gr)-module). Hence we obtained natural functors

GL,s

ModS% —5 Mod”S™* and Mod"C* - Mod);$
L,s,00

/6L /SL.s AT

(resp. Mod;g — Mod;’gf and Mod;’goo — Mod;’gﬁx).
By definition, we immediately see that we have TL(i)ﬁI)\GLﬁs ~ TAL7S(95?L7S) (resp. T(9M)|q, ~
T7,(91)). Similar to Proposition 2.6, we can prove the following.

Proposition 2.7. The functor Mod;’gLL — Mod;gLLs is fully faithful.

The proposition immediately follows from the full faithfulness property of Theorem 2.5 (1) and
the lemma below.

Lemma 2.8. Let K' is a finite totally ramified extension of K. Then the restriction functor
from the category of semi-stable Qp-representations of Gk into the category of semi-stable Qp-
representations of Gk is fully faithful.

Proof. Let V and V' be semi-stable Q,-representations of Gx and let f: V' — V' be a Gg-
equivariant homomorphism. Considering the morphism of filtered (¢, N)-modules over K’ corre-
sponding to f, we can check without difficulty that f is in fact a morphism of filtered (p, N)-
modules over K. This is because K’ is totally ramified over K as same as K. This gives the
desired result. O
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3 Variants of free (p, G)-modules

In this section, we define some variant notions of (¢, é)—modules. We continue to use same notation
as in the previous section. In particular, p is odd.

3.1 Definitions

We start with some definitions which are our main concern in this and the next section.

A /—\/’l‘,é ,s
Definition 3.1. We define the category Mod;gj‘s (resp. Mod/GLL ) as follows. An object is a
triple 90 = (M, pon, G1.s) where

(1) (9, o) is a free Kisin module of height < r over &,

(2) CA?L,SAis an ﬁL—semilinear CA?LS—action on 7€L Rp,&, M (resp. an 7€L7S-semilinear CA?L,S-action
on Rp s ®p.e, M) which induces a continuous G s-action on W(FrR) ®, s, M,

(3) the G'p s-action commutes with vz, © P (resp. YR, ® ©m)s

(4) M C (Re Rp.s, ML (resp. M C (Rs Dp,s, M)1E),

(5) GL., acts on the W (kz)-module (R Q&1 zm)/u,dﬁL ®p,&, M) (resp. (ﬁL,S Q.61
M) /1 1,s(Ri,s e, M)) trivially.

Morphisms are deﬁned by the obvious way. By replacing “free” of (1) with “torsion”, we define
——1,GL..

the category Mod/ ° (resp. Mod/GL ).

Remark 3.2. The category Mod G is very similar to the category Mod;’GL ** from Definition
2.3, and so it may give the reader a httle confusion. The differences between these categories are
as follows.

T,GL,S TyGL,S
Mod/GL i M d/GL
the base ring Grs Sy
coefficients of G, ;-actions Rer.s Rr
For any object 9 of Mod;’gf’s or Mod;gL °, we define a Z,[G[, s]-module TLS(E):TZ) by
Homg <p(RL Q.. M W(R)) if 9 is free,

T o(9M) =
£.s (M) { Homp (R ®@p.e, M,Qp/Z, ®z, W(R)) if M is torsion.

Here, G, , acts on T, ;(9M) by (0.f)(z) = o f(afl(z))) foro € G, f€TL (M), 2 €RLOps,
N —,G rGrL,s
9N. Similar to the above, for any object 91 of Mod/G “or Mod/gLL we define a Z,[G, s]-module

TL’S(QTR) by

Hom 5 (ﬁL,S ®p,c, M W(R)) if 9 is free,

(Rr,s @p,6, M, Qp/Zy @z, W(R)) if 9 is torsion.

TL,S(SIAR) = { b

Rienp

’I"C;'L5 G Lb 7“GL‘5

On the other hand, we obtain functors Modr GL — Mod,, — Mod/s, — Mod,

and Mod;gL — Mod;gL o MOd/GL; — Mod;’gLL‘s by natural manners and it is read-

ily seen that these functors are compatible with TL and TL’S. In particular, the functors TL’S

10
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GL.s .G . . . .
on Mod;6 LL and Mod s,  take their values in Repg:'ﬂ(G L,s) since we have an equivalence of

categories TL’S: Mod;gf Y Rep%’jt(GL’s) by Theorem 2.5.

In the rest of this section, we study free cases. We leave studies for torsion cases to the next
section.

Convention: For simplicity, if L = K, then we often omit the subscript “L” from various notations

A ~ —r,G ,s ——,G
(e.g. Mod;’g:’s = Mod?’gs,Mod/Gg = Mod g ). Furthermore, if s = 0, we often omit the

rGr.o ——r,G

subscript “s” from various notations (e.g. Mod;’glf’“ = Mod;gf,l\//l\(;(/l/gho = Mod g, ).

3.2 The functors Mo’ — Mod"S" — Mod &” — Mod’C"
. € 1unctors o /6 — (6] /6 — (6] /6 — (6] /s
. . G, .
Now we consider the functors Mod;’g — Mod;’gs — Mod g — Mod;’g:. At first, by Proposition
—,G A
2.6, we see that the functor Mod g — Mod?’g: is fully faithful. It follows from this fact and
~ NT,GS
Theorem 2.5 (1) that the functor Ts: Mod g — Repg’st(Gs) is fully faithful. It is clear that the
/& /6

this with Theorem 2.5 (1) and Lemma 2.8, we obtain that the functor Mod;’g — Mod;’gs is also
fully faithful. Furthermore, we prove the following.

. ——rG, . - .
functor Mod”:¢* — Mod /e s fully faithful and thus so is 7: Mod & — Rep%’;t(Gs). Combining

A — .G
Proposition 3.3. The functor Mod;’gs — Mod;G is an equivalence of categories.

Summary, we obtained the following commutative diagram.

N N s .
Mod/g &= Mod/§* — = Mod ;g & Mod$*

/6 /S /S
i AN
7 | T
Rep;’:t (GK)( restriction Repg:t (Gs ) )

G .
Remark 3.4. The functor Mod ;g < Mod;’gs may not be possibly essentially surjective. In
fact, under some conditions, there exists a representation of Gx which is crystalline over K but

not of finite height. For more precise information, see [Li2, Example 4.2.3].
Before starting the proof of Proposition 3.3, we give an explicit formula such as ( 2.4.1) for

——1,Gg ~
an object of Mod g . The argument below follows the method of [Li2]. Let 99t be an object of

——,G ~ ~ ——r,Gs A
Mod,g . Let 9, be the image of M for the functor Mod g — Mod;’gj. Put D = Sk, ®p,6 M

and also put Dy = Sk,,s Qp,e, Ms = SKo,s®SK0 D. Then Dy has a structure of a Breuil module and
also D = D, /I, Sk, sD; has a structure of a filtered (¢, N)-module corresponding to Q,®z, T (9515)
(see subsection 2.4), which is isomorphic to D/I; Sk, D as a p-module over Ky. By [Lil, Lemma
7.3.1], we have a unique p-compatible section D < D and we regard D as a submodule of D C D,
by this section. Then we have D = Sk, ®k, D and Ds; = Sk, s ®k, D. By the explicit formula (
2.4.1) for M, we know that

G4(D) C (Ko[t] N Ri,.s) @K, D
(Note that R, s can be regarded as a subring of Ko[t,us] via Lemma 7.1.2 in [Lil].) Hence,
taking any Ko-basis eq,...,eq of D, there exist A4(t) € Myxq(Ko[t]) such that T (g, - ,€d) =

11
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(e1,...,eq)As(t). Since A5(0) = Ig, we see that log(As(t)) € Myxa(Ko[t]) is well-defined. On the
other hand, choose gy € G such that x,(g0) # 1, where x,, is the p-adic cyclotomic character. Since
gor?" = (7P7)X»(90) g5 we have A, (x,(go)t) = As()X»(90) and thus we also have log(A(x,(g0)t)) =
Xp(g0)log(As(t)). Since log(A(0)) = log(Iy) = 0, we can write log(As(t)) as tB(t) for some
B(t) € Myxa(Ko[t]). Then we have x,(g0)tB(xp(90)t) = Xp(g0)tB(t), that is, B(x,(g0)t) = B(t).
Hence the assumption x,(go) # 1 implies that B(t) is a constant. Putting Ny = B(t) € Mgxa(Ko),
we obtain
™ (er, ea) = (1, ea) Y Nivilt))
>0

Now we define Np: D — D by N(ey, -+ ,eq) = (e1, -+ ,eq)p Ny and also define Np := Ngy, ®
Idp +IdSK0 ® Np. (Note that we have Npyp = popNp and thus Np is nilpotent.) It is a routine
work to check the following:

r) = Zg(a)%(—log([é(g)])) ® Ni(z) for g€ Gya€ BE, ,xeD. (3.2.1)
Since we have
= i(~log([e(9)]))N§,, (f) (3.2.2)
1>0

for any g € Gk and f € Sk,, we obtain the following explicit formula:
(a ®x) Zg a)vi(—log([e(9)])) ® Np(x) for g € Gs,a € Bl ,z € D. (3.2.3)

In particular, as in subsection 2.4, we can show that
log(r?")(z) = p't ® Np(x) (3.2.4)
for any =z € D.

Proof of Proposition 3.3. We continue to use the above notation. It suffices to prove that the
G,-action on R, R, M preserves R ®p,e M. Note that we have R ®p,6 M= (Ri, ®r, D) N
(W(R) ®yp,6 M), Gs(M) C R Rp,e M C W(R) ®p,6 M and G5(Rk,) C Rk, Thus it is enough
to show G4(D) C Rk, @k, D. This quickly follows from ( 3.2.1). In fact, we have

Z% —log([e(9)])) ® Nh(x) € Rk, @k, D for x € D, g € G,.

3.3 Relations with crystalline representations

~ A /—\_/'r,és
We know that Q, ®z, Ts(91) is semi-stable over K, for any object M of Mod/bs or Mod g -

This subsection is devoted to prove a criterion, for im, that describes when Q, ®z,, T. q(f)jT) becomes
crystalline.

Following [Fo2, Section 5] we set I™IBT. = {x € B, | o"(z) € FiI" B}, for all n > 0}. For
any subring A C Bms, we put II™M A = Aﬂ]fr”]B+ Furthermore, we also put I+ 4 = I[m]A.LrA
(here, I A is defined in Subsection 2.3). By [F02 Proposition 5.1.3] and the proof of [Li2, Lemma

3.2.2], we know that I™ W (R) is a principal ideal which is generated by ¢(t)™
Now we recall Theorem 2.5 (2): if 9t is an object of Mod;&*, then Q, ®z, T (M) is crystalline
if and only if 77" () — x € w2 (IMNW (R) ®,,s, M) for any = € M. However, if such 9 descends to

a Kisin module over &, then we can show the following.

12
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Theorem 3.5. Let M be an object of Mod;gs or 1\716?1;’55. Then the following is equivalent:
(1) Q ®z, To(9M) is crystalline,
(2) 77" (2) — 2 € wP(IMNW(R) ®@,.6 M) for any x € M,
(3) " (2) —z € IMW(R) ®, e M for any x € M.

Proof. (1) = (2): The proof here mainly follows that of [GLS, Proposition 4.7]. We may suppose 9

is an object of m;g Put D = Sk, ®p,e M and D = D/I, Sk, D as in the previous subsection.
We fix a ¢(6&)-basis (é1,...,é4) of M C D and denote by (eq,...,eq) the image of (é1,...,é4)
for the projection D — D. Then (ey,...,eq) is a Kop-basis of D. As described before the proof
of Proposition 3.3, we regard D as a p-stable submodule of D, and we have Np: D — D and
NDI DD — DD.

Now we consider a matrix X € GLgx4(Sk,) such that (é1,...,é4) = (e1,...,eq)X. We define
S = W(k)[u?,u/p] as in Section 4 of [GLS], which is a sub W( )- algebra of S with the
property NSKO (S) ¢ uPS. By an easy computation we have U = X 'BX + X~ 1NSKO (X).
Here, B € Mgxa(Ko) and U € Myxa(Sk,) are defined by Np(ey,...,eq) = (e1,...,eq)B and
Np(é1,...,6q) = (é1,...,64)U. By the same proof as in the former half part of the proof of [GLS,
Proposition 4.7], we obtain X, X! € ded(g[l/p]). On the other hand, let 9, be the image of

9 for the functor 1\/458;5 — Modgfs. Now we recall that D, = Sk, s ®,.c, M, has a structure
of the Breuil module corresponding to Q, ®z, Ts(iﬁté) Denote by Np, its monodromy operator.
By the formula ( 2.4.2) for 9, and the formula ( 3.2.4) for 9, we see that p*Np = Np, on
D. Therefore, Q, ®z, Ts(iﬁt) is crystalline if and only if Np, mod ISk, sDs is zero, which is
equivalent to say that Np = (Np mod ISk, D) is zero, that is, B = 0. Therefore, the latter half

part of the proof [GLS, Proposition 4.7] gives the assertion (2).
(2) = (3): This is clear.

R R —7,Gs
(3) = (1): Suppose that (3) holds. We denote by Ms the image of M for the functor Mod ;g —

Modg G+ as above. We claim that, for any = € My, we have 77" (z) — x € IMW(R) @,, M. Let
x—a®y€§m =G, ®Gfmwherea€6 and y € M. Then

™ (2) =z =77 (p()) (77 (y) — ) + (77 (p(a)) — p(a))y

and thus it suffices to show 77" (¢(a)) — ¢(a) € I'W (R). This follows from the lemma below and
thus we obtained the claim. By the claim and [Oz2, Theorem 21], we know that Q, ®z, Ts (M) ~
Qp ®z, T, (9M) is crystalline. 0

Lemma 3.6. (1) We have INW(R) nu’BJ,, = w*ITMW(R) for ¢ > 0.
(2) We have g(a) —a € ul™MW(R) for g€ G and a € &.

Proof. This is due to [GLS, the proof of Proposition 7] but we write a proof here.

(1) Take z = u'y € IMW(R) with y € Bf,_. By Lemma 3.2.2 of [Li4] we have y € W (R). Now we
remark that uz € Fil"W(R) with 2 € W(R) implies 2 € Fil"W (R) since u is a unit of Bj;. Hence
u'y € TNW(R) implies y € MW (R).

(2) By the relation ( 3.2.2), we see that g(a) —a € IW(R). On the other hand, if i > 0,
we can write N§_ (a) = ub; for some b; € &. Thus by the relation ( 3.2.2) again we obtain

gla) —a € uB}, Then the result follows from (1). O

cris*

4 Variants of torsion (¢, G)-modules

G,
In this section, we mainly study full subcategories of Mod /G oo defined below and also study rep-
resentations associated with them. As a consequence, we prove theorems in Introduction. We use

13



Yoshiyasu Ozeki Galois equivariance of homomorphisms

same notation as in Section 2 and 3. In particular, p is odd. In below, let vy be the valuation of
R normalized such that vg(m) = 1/e and, for any real number = > 0, we denote by m%m the ideal
of R consisting of elements a with vg(a) > .

Let J be an ideal of W(R) which satisfies the following conditions:

o J ¢ pW(R),
e J is a principal ideal,
e J is g-stable and G,-stable in W (R).

By the above first and second assumptions for J, the image of J under the projection W (R) - R
. >(,'J
is of the form m%"™’ for some real number c; > 0.

/—\-/TG

Definition 4.1. We denote by 1\//5?1;6 7 the full subcategory of Mod/c consisting of objects
M which satisfy the following condition:

P (2) — 2z € JW(R) @pe M for any z € M.

—— 7ést —~— G
Also, we denote by Rep:Or (G,) the essential image of the functor Tj: Mod;b — Rep;o, (Gs)
—~r,G,J
restricted to Mod;gm

/—\/T,h ,. /—\/TG ’I"GS,J T,GS,J/
By definition, we have Mod ;g C Mod/@; and Repi,, (Gs) C Repy,,  (Gs) for J C J'.

4.1 Full faithfulness for Mod;g -

—~1,Gs,J
For the beginning of a study of Mod g _ , we prove the following full faithfulness result.

Proposition 4.2. Let r and r' be non-negative integers with c; > pr/(p — 1). Let M and N

T T‘,GS7J 7és ,J A A
be objects of Mod,s_ and Mod,s__, respectively. Then we have Hom(9, 91) = Hom (M, N).
(Here, two “Hom”s are defined by obvious manners.)

NT,GS,.I
In particular, if c; > pr/(p — 1), then the forgetful functor Mod,s_ —— Mod?GM is fully
faithful.

Proof. A very similar proof of [OZ2 Lemma 7] proceeds and hence we only give a sketch here. Let

G, J
M and N be objects of Mod/G and Mod g , respectively. Let f: 9t — 91 be a morphism of

Kisin modules over &. Put f = W(R) ® f: W(R) ®,.c M — W(R) ®p,e M. Choose any lift of

7 € G to Gg; we denote it also by 7. Since the G,-action for zm is continuous, it suffices to prove
that A(1® z) = 0 for any = € 9 where A := 77" o f f o 7P". We use induction on n such that
"I = 0.

Suppose n = 1. Since A = (77" — 1) o f - fo (7P" — 1), we obtain the following:

(0): Forany z € M, A(l®x) € ml%c(o)(R Ry, N)

where ¢(0) = ¢;. Since MM is of height < r, we further obtain the following for any ¢ > 1 inductively:

>c(1)

(i): Forany z € M, A(l®z) e mz""(RQue N)

where ¢(i) = pe(i — 1) —pr = (cj —pr/(p — 1))p* + pr/(p — 1). The condition ¢; > pr/(p — 1)
implies that ¢(i) — oo as i — oo and thus A(1 ® z) = 0.

Suppose n > 1. Consider the exact sequence 0 — Ker(p) — 9 LN PN — 0 of p-modules over &.
It is not difficult to check that 91 := Ker(p) and M := pN are torsion Kisin modules of height <

14
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over & (cf. [Lil, Lemma 2.3.1]). Moreover, we can check that 9% and 9 have natural structures
of objects of Mod, /6 " (which are denoted by 9V and M, respectively) such that the sequence
0— 9N — 9N 5 N - 0 induces an exact sequence 0 — fﬁ’ — fﬁ — N” — 0. By the lemma

below, we know that N and N” are in fact contained in Mod /& G . By the induction hypothesis,
we see that A(1 ® x) has values in (W(R) ®,,e M) N (JW(R) ®p,e N). By Lemma 6 of [Oz2]
and the assumption that J ¢ pW(R) is principal, we obtain that A(1 ® z) € JW(R) ®p,c M.
Since pM = 0, an analogous argument in the case n = 1 proceeds and we have A(1 ® z) = 0 as
desired. O

Lemma 4.3. Let 0 — M — M — M’ — 0 be an ezact sequence in Mod/c Suppose that M is

G, J J
an object of Mod/G . Then M and M" are also objects of Mod/Gm

~ NT,GS,J s
Proof. The fact M" € Mod,s_ is clear. Take any z € M. Then we have 77 (z) —z €
(JW(R)®yp,6 M) N(W(R) ®yp,eM'). Since J is a principal ideal which is not contained in pW (R),

s G, J
we obtain 77 (z) — z € JW(R) ®,.¢ M’ by Lemma 6 of [0z2]. This implies M € Mod/c . O

TGé,J
4.2 The category Rep,,, (Gs)

— G,
In this subsection, we study some categorical properties of Rep:Or (Gs).

~ ——,G
Let 9 be an object of Mod /g__. Following Section 3.2 of [Li2] (note that arguments in [Li2]

is the “free case”), we construct a map i, which connects M and T (9M) as follows. Observe that
there exists a natural isomorphism of Z,[G]-modules

T(9) = Homyy (r), (W (R) ®p.6 M, Qp/Zy @z, W(R))

where G, acts on Homyy (), (W (R) ®4p,e M, Qp/Zy, @z, W(R)) by (0.f)(z) = o(f(c~(x))) for o €
Gs, f € Homy (g o (W(R)®y,eM, Qp/Zy,272,W(R)),r € W(R )®¢ sM=W(R)®z (Rs®y,eM).
Thus we can define a morphism i,: W(R) ®,.e M — Homg, (T5(M), Q,/Z, @z, W(R)) by

e (f = f(x), z€W(R)®pe M, f e T(M).

Since T}, (901) ~ Bic1Zy /P Ly as Zy-modules, we haveanatural isomorphism Homgz,, (T (M), Qp/Zp®7z,
W(R)) ~ W(R) ®z, T (9M) where T (9M) = Homg, (T, (M), Q,/7Z,) is the dual representation of

T (951) Composing this isomorphism with 7/, we obtain the desired map
is: W(R) ®p6 M — W(R) ®z, T ().

It follows from a direct calculation that is is ¢-equivariant and Gs-equivariant. If we denote by

M, the image of M for the functor 1\//1\&1;500 — 1\/Iod7ci‘:>o (cf. Section 3.1), then the above i is

isomorphic to “i for M, in Section 4.1 of [Oz1]”. Hence Lemma 4.2 (4) in loc. cit. implies that
W(Fr R) ® is: W(Fr R) @w gy (W(R) @6 M) = W(Fr R) @w(r) (W(R) ®z, T (M)

is bijective.

Proposition 4.4. Let (R): 0 - T" =T — T" — 0 be an ezact sequence in Repyo, (Gs). Assume

that there exists M € 1\7[621;5;‘] such that Ty(MM) ~ T. Then there exists an ezact sequence

(M): 0= D" — M — N = 0 in Mod s such that Ty((M)) ~ (R).

15
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Proof. The same proof as [Ozl, Theorem 4.5], except using not ¢ in the proof of loc. cit. but

. " R ——,G
is as above, gives an exact sequence (M): 0 — M’ — M — M’ — 0 in Modg_ such that
To((M)) ~ (R). Therefore, Lemma 4.3, gives the desired result. O

G J

Corollary 4.5. The full subcategory l{{\e/p:;r (Gs) of Repio,(Gs) is stable under subquotients.

Let L be as in Section 2, that is, the completion of an unramified algebraic extension of K with
residue field k;. We prove the following base change lemma.

Lemma 4.6. Assume that J D upI[”W(R) or L is a finite unramz'ﬁed extension of K. If T is an

. —— .Gy, J rGr s
object of Repy,,  (Gs), then T, . is an object of Reptor (Grs)-

By an obvious way, we define a functor Mod, /@ * . Mod, /G " The underlying Kisin module of

the image of 9 € Mod /G; for this functor is My = & ®s M. Lemma 4.6 immediately follows
from the lemma below.

Lemma 4.7. Assume that J > wpPIlt ]W(R) or L is a ﬁm'te unramified extension of K. Then the

Gs s — r,G mGrL,s
functor Mod/G — Mod/b “* induces a functor Mod/G —> Mod/GLLoo .

~ /—\/T,és T, G
Proof. Let M be an object of Mod g and let M, be the i image of M for the functor Mod/c —

s

r,G
Mod /bLL . In the rest of this proof, to avoid confusions, we denote the image of = € My in
W(R) ®p,e, M by 1 ® x. Recall that we abuse notations by ertlng 7 for the pre-image of
7 € Gk peo under the bijection Gy ~ G peo of lemma 2.2. Then 7P" is a topological generator

G, J
of G sp~. It suffices to show the following: if M is an object of Mod/b , then we have

——T GS,J

P ler) - (1or) € JIW(R) ®us, M, for any z € M. Now we suppose Mm e Mod/b

Take any a € &1, and z € M. Note that we have 77" (1 ® az) — (1 ® ax) = 7 (p(a))(7?° (I®

s ——nr,Gs,J
z)— (1®z)+ (17" (p(a)) — ¢(a))(1 @) in W(R) @p.s, Mr. Since M is an object of Mod/G ,

we have 77" (p(a)) (TP (1 ® ) — (1 ® 7)) € JW(R) ®y.s, Mr. Therefore, it is enough to show
(77" (p(a)) — p(a))(1 @ 2) € JW(R) ®yp.&, Mr. This follows from Lemma 3.6 immediately in the

case where J D uPTMW(R). Next we consider the case where L is a finite unramified extension
of K. Let ¢1,...,¢; € W(kr) be generators of W(ky) as a W(k)-module. Then we have & =
25:1 ¢;6 and thus we can write a = Z?Zl a;c; for some a; € &. Hence it suffices to show
(77" (p(a;)) — p(a;))(1 @ z) € JW(R) @,., Mz but this in fact immediately follows from the
equation (77 (1(a;)) — (a;))(1 8 2) = (7 (1 & a;2) — (1 ® a;2)) — (77" ((a;)) (7" (L @) — (1

Remark 4.8. For a general L, the author does not know whether the statement of the above
lemma is true or not.

4.3 Full faithfulness theorem for Rep:(fSJ(GS)

Our goal in this subsection is to prove the following full faithfulness theorem, which plays an
important role in our proofs of main theorems.

Theorem 4.9. Assume that J > uPTMNW(R ) or k is algebraically closed. If p**t2/(p—1) > ¢y >
r,Ge,J
pr/(p — 1), then the restriction functor Reptor (Gs) = Repio, (Goo) s fully faithful.
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First we give a very rough sketch of the theory of maximal models for Kisin modules (cf. [CL1]).
For any 9 € Mod)g__, put M[1/u] = &[1/u] ®s M and denote by Fg(M[1/u]) the (partially)
ordered set (by inclusion) of torsion Kisin modules 91 of height < r which are contained in D1 /u]
and N[1/u] = M[1/u] as p-modules. The set FE(M[1/u]) has a greatest element (cf. loc. cit.,
Corollary 3.2.6). We denote this element by Max" (9%). We say that 9t is maximal of height < r (or,
mazimal for simplicity) if it is the greatest element of FZ(9[1/u]). The association M — Max" (90F)
defines a functor “Max”” from the category Mod?GM of torsion Kisin modules of height < r into
the category Max?Goo of maximal Kisin modules of height < r. The category Max;Gm is abelian
(cf. loc. cit., Theorem 3.3.8). Furthermore, the functor Te: Max)g_  — Repyo,(Goo), defined by
Ts(M) = Home (M, Qp/Zy @7, W(R)), is exact and fully faithful (cf. loc. cit., Corollary 3.3.10).
It is not difficult to check that Te (Max” (901)) is canonically isomorphic to T (901) as representations
of G for any torsion Kisin module 91 of height < r.

Definition 4.10 ([CL1, Section 3.6.1]). Let d be a positive integer. Let n = (n;);cz/q4z be a
sequence of non-negative integers of smallest period d. We define a torsion Kisin module M(n) as
below:

e as a k[u]-module, M(n) = B, c7/az klule:;

o for all i € Z/dZ, p(e;) = u™iejtq.

We denote by S}, the set of sequences n = (n;);cz/qz of integers 0 < n; < min{er,p—1} with
smallest period d for some integer d except the constant sequence with value p — 1 (if necessary).
By definition, we see that 9t(n) is of height < r for any n € S&, .. Putting ro = max{r’ €
Zso;e(r’ —1) < p— 1}, we also see that M(n) is of height < ry for any n € S;, .. It is known
that M(n) is maximal for any n € S] . ([CL1, Proposition 3.6.7]). If k is algebraically closed,
then 9M(n) is simple in Max)g_ for any n € Sy, (cf. loc. cit., Propositions 3.6.7 and 3.6.12)
and furthermore, the converse holds; any simple object in Max?GOO is of the form 9M(n) for some
ne Sk (cf. loc. cit., Propositions 3.6.8 and 3.6.12).

Lemma 4.11. Assume that p°*2/(p — 1) > c;. Let d be a positive integer. Let n = (ni)iez/dz be
a sequence of non-negative integers of smallest period d. If M(n) is of height < r, then M(n) has
— r,és,.]
a structure of an object of Mod s _
Proof. Choose any (p? — 1)-th root n € R of . Since [n] - exp(t/(p? — 1)) is a (p? — 1)-th root of
unity, it is of the form [a] for some a € ]F;d. Replacing na~! with 7, we obtain [] = exp(—t/(p? —
1)) € R*. Put 2; = [n]™ € R* and 7; = nm e (7/5/]37/5)X C R* for any i € Z/dZ, where
m; = Z?;é ni+jpd_j. We see that z; — 1 is contained in 11 R. In the rest of this proof, to avoid
confusions, we denote the image of z € M(n) in Ry @y, M(n) C R @y ko) M(n) by 1 ® z. Now
we define a G-action on R Qs M(n) by 777 (1 @ €;) = :Z‘f(l ® e;) for the basis {e;};cz/az of
M(n) as in Definition 4.10. We claim that g = g on R, ®gp,6 M(n) for any g € Gs. For this, it
suffices to check that the equality 72 (1 ® e;) = ¢72 (1 ® ¢;) holds for any i. Note that we have

7 o(l@e) =77 (W™ (1 ep1)) = 34, (€7 w)P" (10 eip1)

and
s+

(prs(l X ei) = (p(i‘fs(l X 61)) = ff l’U/pni’(l &® €i+1).

s+1 s s
Hence it is enough to check 2 = a? 1 lelP "'ni hut we can show this equality without difficulty.
In fact, we have equivalences

t

s+1
P +1 ) _ exp(*psmi—&-lpd — *pSJrlTLl‘t)

s s+1,
ai =[]’ " e exp(—p° mipd 1

< pm; =M1 + (de -

p)nz‘

17
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and the last equality can be checked immediately by definition of m;.

—rG, .
By the claim above, we see that Mt(n) has a structure of an object of Mod g via this G-

.Gy, J

action; we denote it by 9(n). It suffices to prove that 9(n) is in fact an object of Mod g -
Recall that vg is the valuation of R normalized such that vg(w) = 1/e. Define t = t mod pW (R)
an element of R. We denote by v, the usual p-adic valuation normalized by v,(p) = 1. Note that
we have vg(e — 1) = p/(p — 1) and vg(t) = 1/(p — 1) (here, the latter equation follows from the
relation ¢(t) = pE(0)~'E(u)t). Moreover, we have vg(e™ — 1) = vp(n™ — 1) = pU»(M+1/(p — 1)
for any m € Z, by [GLS, Lemma 6.6 (1)]. Thus we have

ps-i-'up (m;)+1 ps+2

s s

vr(z; —1) =vr(n” ™ —1) =

p—1 T p—1
Since p**2/(p — 1) > ¢; and the image of J in R is m3z°’, we obtain
P (1ee) - (10e¢)cmp”R D k[u] M) ~ JW(R) @46 M(n).

Finally we have to show that 77" (1 @ ae;) — (1 ® ae;) € mIZ%CJR R k[u] PM(n) for any a € kfu].
Since 77 (1 ® ae;) — (1@ ae;) = 77" (p(@) (TP (1@ €;) — (1@ €3)) + (77" (12(a)) — p(a))(1 @ e7), it
suffices to show 77° (p(a)) — ¢(a) € mz*. Write p(a) = > iso aiuP’ for some a; € k. Then we have
™ (p(a)) — ¢(a) = dis1 ai(gpsﬂi — 1)uP?. Since we have

s+1, o 1)upi) _ ps+1vR(§i o 1) + ’UR(Upi) >

vr((e?

for any ¢ > 1, we have done. O
Recall that rg = max{r’ € Z>¢;e(r' — 1) < p—1}. Put ry := min{r,ro}.

Corollary 4.12. Assume that p*™2/(p — 1) > c;. Ifn € S”

o> then M(n) has a structure of an

—— ' G, J
object of MOd;Gm for any v’ > ry. Furthermore, if c; > pri/(p — 1), it is uniquely determined.
We denote this object by 9M(n).

Proof. We should remark that 9%(n) is of height < ry for any n € S ... The uniqueness assertion
follows from Proposition 4.2. O

Before the lemma below, we remark that any semi-simple IF,-representation of G i is automatically
tame.

Lemma 4.13. (1) The functor from tamely ramified torsion Z,-representations of Gk to torsion
Zy-representations of G, obtained by restricting the action of Gk to Gu, is fully faithful.

(2) The restriction functor in (1) induces an equivalence between the category of semi-simple
(resp. irreducible) Fp-representations of Gx and the category of semi-simple (resp. irreducible)
Fp,-representations of G-

Proof. (1) The result immediately follows from the fact that Gk is topologically generated by G,
and the wild inertia subgroup of G . 4
(2) It suffices to show the assertion for irreducible representations. Denote by Repy (Gx) and

irr

RepFP(GOO) the category of irreducible [F)-representations of Gx and G, respectively. First we
show that the restriction of the action of Gk to G induces a functor Rep]i;:(G K)— Rep]iFr:(Goo).
Let T be an irreducible IF-representation of Gx. Take a G-stable submodule T "of T. Let Kt be
the maximal tamely ramified extension of K and I, = Gal(K /K"®) the wild inertia subgroup of G.
Then I, acts on T trivially. In particular, T" is stable under I,-action. Since G is topologically
generated by Go, and I,, we know that T” is a Gg-stable submodule of T. Hence 7V = 0 or T
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and this implies that T'|¢__ is irreducible. Thus the restriction functor Rep]iFr;(G K)— Repi-r;(Goo)
is well-defined. This is fully faithful by (1). It is enough to show that this functor is essentially
surjective. Let T" be an irreducible F,-representation of G,. Since G, N I, acts on T trivially,
the Goo-action on T factors through Go,/Goo N I,. We define a Gg-action on T' via natural maps
Gk — Gal(K'/K) ~ Gal(Kso K" /Koo) >~ Goo/Goo NI, The restriction of this G g-action on T' to
G coincides with the original G -action on 7" and thus we finish a proof. O

Lemma 4.14. Assume that J D> uPTMW(R) or k is algebraically closed. Let T € Repy,,(Gs) and

—r,Gg,J
1" € Repy,,  (Gs). Suppose that T' is tame, pT = 0 and T'|c., ~ Te(M) for some M € Mod)s_ .
Furthermore, we suppose p**2/(p—1) > ¢y > pr/(p—1). Then all G« -equivariant homomorphisms
T — T are Gs-equivariant.

Proof. Let L be the completion of the maximal unramified extension K" of K. By identifying G,
with G gur, we may regard G as a subgroup of Gi. Note that L, = K, L is the completion
of the maximal unramified extension of K(,, and Gy is topologically generated by G, s and Go.
Consider the following commutative diagram:

Homg, ,(T,T")———— Homg, _(T,T")

Homg (T,7')—— Homg_ (T, T").
Since T"|g, , is contained in ﬁ\eE):;fL’SJ(GL,S) if J > uPIMW(R) (cf. Lemma 4.6), the above
diagram allows us to reduce a proof to the case where k is algebraically closed. In the rest of this
proof, we assume that k is algebraically closed. Under this assumption, an Fj-representation of
G is tame if and only if it is semi-simple by Maschke’s theorem. Thus we may also assume that
T is irreducible (here, we remark that any subquotient of T is tame and, also remark that the
essential image of Ts: Mod)g_ — Repy, (Goo) is stable under subquotients in Repy, (G)). By
the assumption on 7', we have T'|q. ~ Te (M) ~ Te(Max" (M) for some M € Mod)g_. Since
T|c.. is irreducible (cf. By Lemma 4.13 (2)) and Ts: Max)g_ — Repy,, (Goo) is exact and fully
faithful, we know that Max"(91) is a simple object in the abelian category Maxg_ . Therefore,
since k is algebraically closed, we have Max" (90t) ~ 9(n) for some n € S, (cf. [CL1, Propositions

max

~ NT‘,GS,J
3.6.8 and 3.6.12]). Let M(n) be the object of Mod,s =~ as in Corollary 4.12. We recall that
T (M(n)) is isomorphic to Ty (M(n))| ¢ (see Theorem 2.5 (1)), and hence we have an isomorphism
Tla.. =~ Ts(M(n))|c.,. Here, we note that T and Ts(9M(n)) are irreducible as representations of G4
(cf. [CL1, Theorem 3.6.11]). Applying Lemma 4.13 again, we obtain an isomorphism T' ~ T (90%(n))
~ ~ NnGS,J
as representations of G5. On the other hand, we can take 9 = (M, p, G;) € Mod s _  such that

T ~ T,(9'). We consider the following commutative diagram:
Homg, (T, T")C Home_ (T, T")

X .

forgetful Max"

Hom (90, M(n)) —— Home (M, M(n)) —=> Home ,,(Max" (IV), M(n))

ExR)

Here, Hom (90, M (n)) is the set of morphisms M — 9M(n) in the category 1\/48?1;’5;. The first
arrow in the bottom line is bijective by Proposition 4.2 and so is the second (this follows from the
fact that 2t(n) is maximal by [CL1, Proposition 3.6.7]). Since the right vertical arrow is bijective,
the top horizontal arrow must be bijective. O

Now we are ready to prove Theorem 4.9.
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— aéﬁhJ . .
Proof of Theorem 4.9. At first, we note that the category Rep:or (Gs) is an exact category in the

Nr,és,,f
sense of Quillen ([Qu, Section 2]) by Corollary 4.5. Hence short exact sequences in Rep,.,  (Gs)

give rise to exact sequences of Hom’s and Ext!’s in the usual way. (This property holds for any
exact category.) Let T and T” be objects of Rep:Or (Gs). Take any Jordan-Holder sequence

0=TyCTy C---CT, =T of T in Rep,,,(Gs). By Corollary 4.5 again, we know that T;
and T;/T;_; are contained in Rep:Or (Gs) for any i. By Lemma 4.14, if an exact sequence

—— 7GS?‘] . . . .
0T -V =>T;/T,-1 - 0in Rep:O]r (Gs) splits as representations of G, then it splits as
a sequence of representations of Gs. This shows that the fourth column in the diagram below is
injective:

0 — Homg, (T;/Ti—1,T") —— Homg, (T;,T') — Homg, (Ti—1,T’) —— Ext*(T;/T;-1,T")

| | | |

0 — Homg (T;/T;-1,T") — Home (1, T") — Home (Ti-1,T") — Extg__ (T;/Ti—1,T")
. 1 . . . . NT,GS,J
Here, the extension Ext™ (T;/T;—1,T") in the above diagram is taken in the category Rep;,, (Gs)-
In addition, it follows from Lemma 4.14 that the first column is an isomorphism. Therefore, we
obtain an implication that, if the third column is an isomorphism, then the second one is an
isomorphism. Hence a dévissage argument works and the desired full faithfulness follows. O

4.4 Proof of Theorem 1.2

Now we are ready to prove our main theorems. First we prove Theorem 1.2. Recall that a torsion
Zy,-representation T' of Gk is torsion crystalline with Hodge-Tate weights in [0,7] if it can be
written as the quotient of lattices in some crystalline Q,-representation of G with Hodge-Tate
weights in [0,7]. Let Repl:S™*(Gk) be the category of them. We apply our arguments given in
previous subsections with the following .J:

J = uPTHW(R) = uPp()W (R).

Then we have c¢; = p/e + p/(p — 1) and thus the inequalities p**2/(p — 1) > c¢; > pr/(p — 1)
are satisfied if e(r — 1) < p — 1. Therefore, Theorem 1.2 is an easy consequence of the following
proposition and Theorem 4.9.

— G, J
(Gk) is a subcategory of Rep,., (Gs) when s = 0.

r,cris

Proposition 4.15. The category Repy.,

Proof. In this proof, we put s = 0. So we omit subscript s in various notation (e.g., G, = G’,

/—\/T,Gs /—\/T,G fa
Mod e _ = Mod g __ ). Let T be an object of Repy,,”(G) and let L C L’ be lattices in a crystalline

tor

Q,-representation with Hodge-Tate weights in [0, r] such that L' /L ~ T. By Theorem 2.5 (1), there

exists an injection £ < & of (¢, G)-modules over & which corresponds to the injection L < L.
Now we put MM = £/&'. Since L'/L is killed by a power of p, M is an object of Mod)g . We

equip a G-action with ﬁ'@’so,@ M by a natural isomorphism R ®p.e M~ (R Q.6 £)/(R R, L).
Then we see that 91 has a structure of an object of Mod;gx; denote it by 91. Moreover, Theorem

N —r,G,J
3.5 implies that 901 is in fact contained in Mod /g __ . By a similar argument to the proof of Lemma

3.1.4 of [CL2], we have an exact sequence 0 — T'(£) — T'(£') — T(9M) — 0 of representations of
Gk which is isomorphic to 0 — L — L’ — T — 0. This finishes a proof. O
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4.5 Proof of Theorem 1.3
We give a proof of Theorem 1.3. If s > n — 1, then we put

s—n+1

J=uwI? T TIW(R) = who()?T W(R).

Note that we have c; = p/e+p*~"+2/(p—1) and thus the inequalities p**2/(p—1) > c; > pr/(p—1)
are satisfied if s > n —1+log,(r — (p—1)/e).

Proposition 4.16. Suppose s > n — 1. If T is an object of Repl:™* (G ) which is killed by p™,
NT,@S,J

then T|q, is contained in Rep,,, (Gs).

Proof. Let L be an object of Repg’sris(GK). Take a (¢, G)-module £ over & such that L ~ T'(£). It
is known that (7 —1)*(z) € uPTHW (R) ®, e £ for any i > 1 and any = € £ (cf. the latter half part
of the proof of [GLS, Proposition 4.7]). Take any = € £. Since (77" —1)(z) = le (’25)(7'— 1)%(z),
we obtain that .
P
(7" =) € Y_p O IIW(R) @, L. (4.5.1)
i=1
Now let T be an object of Rep|:>"™® (G ) which is killed by p™. Take an exact sequence (R): 0 —
Ly = Ly — T — 0 of Z,-representations of Gk with Ly, Ly € Repst(GK). By Theorem 3.1.3
and Lemma 3.1.4 of [CL2], there exists an exact sequence (M): 0 — £y = £ = M — 0 of
(¢, G)-modules over & such that T'((M)) ~ (R). By ( 4.5.1), we see that
p° . 4
(7" = D(@) € Y_p O IIW(R) @6 M
i=1
for any = € 9. Since M is killed by p™ and s > n — 1, we have

s

p
Zpsfvp(i)upl[i]W(R) D M = Z p*rOyP T (R) Ry M
=1 i=1,...,p%,s—vp(1)<n
n—1 .
= > pwP IV W (R) @6 M
£=0
c I "IW(R) @,.6 M.
Therefore, we obtained the desired result. O

Proof of Theorem 1.3. By Theorem 1.2, we may suppose log,(r —(p—1)/e) > 0, that is, e(r —1) >
p—1. Suppose s > n—1+log,(r — (p—1)/e). Note that the condition s > n — 1 is now satisfied.
Let T and 7" be as in the statement of Theorem 1.3. Let f: T — T’ be a Gu-equivariant
homomorphism. Denote by L the completion of K"" and identify G, with the inertia subgroup of
Gr. We note that T|g, and T'|q, are object of Repy,*(G). By Proposition 4.16, T'|q, , and

T'|g, ., are objects of RepzorL (GL,s). Hence we have that f is G s-equivariant by Theorem

4.9. Since G is topologically generated by G, s and G, we see that f is Gs-equivariant. O

4.6 Galois equivariance for torsion semi-stable representations

In this subsection, we prove a Galois equivariance theorem for torsion semi-stable representations.
A torsion Zjy-representation T' of G is torsion semi-stable with Hodge-Tate weights in [0,r] if it
can be written as the quotient of lattices in some semi-stable Q,-representation of G' g with Hodge-
Tate weights in [0,7]. We denote by Repl*'(G) the category of them. Note that Rep ™ (G ) =
Repd™® (G ). Similar to Theorem 1.3, we show the following, which is the main result of this
subsection.

21



Yoshiyasu Ozeki Galois equivariance of homomorphisms

Theorem 4.17. Suppose that s > n — 1+ log,r. Let T and T' be objects of Rep]*(Gk) which
are killed by p™. Then any Goo-equivariant homomorphism T — T" is Gg-equivariant.

If s > n — 1, then we put

J=1""TIW(R) = ()T W(R).
Then we have c¢; = p*~"*2/(p — 1). To show Theorem 4.17, we use similar arguments to those in
the proof of Theorem 1.3.

Proposition 4.18. Suppose s > n—1. If T is an object of Rep,:c’)srt(GK) which is killed by p™, then
NT,GS,J

T|q. is contained in Rep,,, (Gs).

Proof. Let L be a lattice in a semi-stable Q,-representation of G with Hodge-Tate weights in [0, r].
Take a (¢, G)-module £ over & such that L ~ T(£). It is known that (7 —1)(z) € [N W (R)®, & £
for any ¢ > 1 and any x € £ (cf. the proof of [Li3, Proposition 2.4.1]). Thus the same proof proceeds
as that of Proposition 4.16. O

Proof of Theorem 4.17. We have the equality Rep: (Gx) = Rep2™(Gx) and thus Theorem 1.3
for r = 0 is an easy consequence of Theorem 1.2. Hence we may assume r > 1. The rest of a proof

is similar to the proof of Theorem 1.3. O

4.7 Some consequences

In this subsection, we generalize some results proved in Section 3.4 of [Br3]. First of all, we show
the following elementary lemma, which should be well-known to experts, but we include a proof
here for the sake of completeness.

Lemma 4.19. The full subcategories Repl "™ (Gg) and Repl™*(Gk) of Repy,(Gx) are sta-
ble under formation of subquotients, direct sums and the association T + TV(r). Here TV =
Homg, (T, Q,/Zy) is the dual representation of T

Proof. We prove the statement only for Repl’®™*(Gg). Let T € Rep (G x) be killed by p”

tor
for some n > 0. Assertions for quotients and direct sums are clear. We prove that TV (r) is
contained in Rep[’S"™*(Gg). There exist lattices Ly C Ly in some crystalline Q,-representation of
Gk and an exact sequence 0 — Ly — Ly — T — 0 of Z,[Gk]-modules. This exact sequence
induces an exact sequence 0 — T — L1/p"Ly — Lo/p"Ly — T — 0 of finite Z,[G g]-modules.
By duality, we obtain an exact sequence 0 — TV — (Lo/p"Lo)Y — (Ly/p™L1)Y — TV — 0 of
finite Z,|G k]-modules. Then we obtain a G g-equivariant surjection LY — T by the composite
LY — LY /p"LY = (L1/p"L1)Y — TV of natural maps (here, for any free Z,-representation L of
Gk, LY := Homg, (L,Z,) stands for the dual of L). Therefore, we obtain Ly (r) - TV(r) and

thus TV (r) € Rep|:<"(G). Finally, we prove the stability assertion for subobjects. Let T be a
Gg-stable submodule of T. We have a G g-equivariant surjection f: LY — TV — (T")V. Let L}

be a free Z,-representation of G such that its dual is the kernel of f. We have an exact sequence

0 — (L)Y — LY EN (T")Y — 0 of Z,|Gk]-modules. Repeating the construction of the surjection
Ly — TV, we obtain a Gk-equivariant surjection Lj = (L5)"" — (T")"" = T" and thus we have
T’ € Repgyy " (Gr). O

tor

In the case where r = 1, the assertion (1) of the following corollary was shown in Theorem 3.4.3
of [Br3].

Corollary 4.20. Let T be an object of Repl:S™(G ) which is killed by p™ for some n > 0. Let T’
be a G -stable subquotient of T .

(1) Ife(r — 1) < p—1, then T" is Gk -stable (with respect to T).

(2) If s>n—1+log,(r — (p—1)/e), then T" is G-stable (with respect to T).
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Proof. By the duality assertion of Lemma 4.19, it is enough to show the case where T” is a
G o-stable submodule of T. Take any sequence 7" =Ty C T} C --- C Ty, = T of torsion G-
stable submodules of T' such that T;/T;_; is irreducible for any i. As explained in the proof of
Proposition 4.14, the Goo-action on T;/T;_1 can be (uniquely) extended to Gx. By Theorem
5.3 given in the next section, we know that T;/T;_; is an object of Rep%™*(G) where ro :=
max{r’ € Zsg;e(r' —1) <p—1}.

(1) We may suppose r = rg. The Gy-equivariant projection T = T, — T,,/Tm—1 is Gk-
equivariant by the full faithfulness theorem (= Theorem 1.2). Thus we know that T;,—1 is Gk-
stable in T', and also know that T},_; is contained in Rep[.*"™*(G ) by Lemma 4.19. By the same
argument for the Geo-equivariant projection T,,—1 — Ty,—1/Tim—2, we know that T,,_o is G-
stable in T, and also know that T},_5 is contained in Rep[’®"™*(G). Repeating this argument, we
have that T" = T, is G g-stable in T.

(2) Put J = w?I®" " IW(R). By (1) we may assume e(r — 1) > p— 1. Under this assumption we
have r > rg and s > n — 1 +log,(r — (p — 1)/e) > n — 1. In particular, T'|q, and (T;/T;-1)|c.,

e 7Gs~,J oy . :
for any ¢, are contained in Rep:Or (Gs) by Proposition 4.16. First we consider the case where
k is algebraically closed. By Theorem 4.9, the G-equivariant projection T" = T,,, — T, /Trn—1
is G¢-stable. Thus we know that T),,_1 is Gs-stable in T', and also know that T,_1 is contained

— G, J o I
in Rep:Or (Gs) by Corollary 4.5. By the same argument for the Go.-equivariant projection
Tr—1 — Tyn—1/Tm—2, we know that T),_s is Gs-stable in T', and also know that T}, _» is contained

in ﬁeVp:O?J(GS) Repeating this argument, we have that 7" = Tj is Gs-stable in T. Next we
consider the case where k is not necessary algebraically closed. Let L be the completion of the
maximal unramified extension K** of K, and we identify G with the inertia subgroup of G.
Clearly T'|¢, is contained in Repyy " (Gr) and T” is G, __-stable submodule of 7. We have already

shown that 7" is G, s-stable in T. Since G is topologically generated by G, s and G, we conclude
that 7" is G4-stable in T'. O

Now let V' be a Q,-representation of Gx and T a Z,-lattice of V' which is stable under G.
Then we know that T is automatically Gg-stable for some s > 0. Indeed we can check this as
follows. Take any G k-stable Z,-lattice T” of V' which contains T, and take an integer n > 0 with
the property that p®T’ C T. Furthermore, we take a finite extension K’ of K such that Gk acts
trivially on T"/p™T”. Then T/p"T" is G.-stable and also G -stable in T"/p™T". If we take any
integer s > 0 with the property K' N K., C K(4), we know that T'/p"T" is G s-stable. This implies
that T is Gs-stable in T".

The following corollary, which was shown in Corollary 3.4.4 of [Br3] in the case where r = 1, is
related with the above property.

Corollary 4.21. Let V be a crystalline Q,-representation of Gk with Hodge-Tate weights in [0,7]
and T o Z,-submodule of V' which is stable under Goo. If e(r — 1) < p—1, then T is stable under
Gk.

Proof. We follow the method of the proof of [Br3, Corollary 3.4.4]. First we suppose that T'
is finitely generated over Z,. Take any Gg-stable Z,-lattice 77 of V' which contains T'. Since
T'/p™T" is contained in Rep|:™"*(G) for any n > 0, Corollary 4.20 (1) implies that any G-
stable submodule of 7" /p™T” is in fact G g-stable. Thus (T'+p™T")/p™T" is Gk-stable in T" /p"T".
Therefore, we obtain g(T') C (,,5o (' +p"T’) = T for any g € Gk. Next we consider general
case; so T' is not necessary finitely generated over Z,. We may suppose T # 0. Denote by T
the smallest Z,-submodule of 7" which contains x and is stable under G. Since T, is contained
in some (G g-stable) Z,-lattice of V', we see that T}, is finitely generated over Z,, and hence it is

stable under Gx. Then the relation T = UweT T, gives the desired result. O
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5 Crystalline lifts and c-weights

We continue to use the same notation except for that we may allow p = 2. We remark that a
torsion Z,-representation of Gy is torsion crystalline with Hodge-Tate weights in [0, 7] if there
exists a lattice L in some crystalline Q,-representation of Gk with Hodge-Tate weights in [0, ]
and a Gg-equivariant surjection f: L — T. We call f a crystalline lift (of T) of weight < r. Our
interest in this section is to determine the minimum integer r (if it exists) such that 7' admits
crystalline lifts of weight < r. We call this minimum integer the c-weight of T" and denote it by
we(T). If T does not have crystalline lifts of weight < r for any integer r, then we define the c-
weight w.(T") of T to be co. For the existence of crystalline lifts of various torsion representations,
for example, it is useful for the readers to refer the Muller’s PhD Thesis [Mu]. Motivated by [CL2,
Question 5.5], we pose the following question.

Question 5.1. For a torsion Z,-representation T of Gk, is the c-weight w.(T) of T finite?
Furthermore, can we calculate w.(T')?

This question strongly related to the weight part of Serre’s conjecture. It is dated to Serre, when
raised Serre’s conjecture over @@, he had already considered the question to lift a 2-dimensional
mod p representation of Gg, to a 2-dimensional crystalline representation with “optimal” weights
(which is very close to minimum weights considered here). He obtained some partial results that
contained in Proposition 5.6 and Corollary 5.7. We do not go into details here but the recent
developments of the weight part of Serre’s conjecture (e.g., [GLS]) also contribute (explicitly or
implicitly) partial results in this section.

5.1 General properties of c-weights

We study general properties of c-weights. At first, by ramification estimates, it is known that
c-weights may have infinitely large values ([CL2, Theorem 5.4]); for any ¢ > 0, there exists a
torsion Zy-extension T' of Gk with w.(T) > ¢. In this paper, we mainly consider representations
with “small” c-weights. If c-weights are “small”, they are closely related with tame inertia weights.
Now we recall the definition of tame inertia weights. Let Ix be the inertia subgroup of Gx. Let
T be a d-dimensional irreducible [F,-representation of Ix. Then T is isomorphic to

Fpa(0g)y - 0a.a)

for one sequence of integers between 0 and p — 1, periodic of period d. Here, 841,...,04,4 are the
fundamental characters of level d. The integers ni/e,...,nq/e are called the tame inertia weights
of T. For any IFp-representation T' of G'x, the tame inertia weights of 1" are the tame inertia
weights of the Jordan-Hélder quotients of Tz, .

Let xp: Gk — Z, be the p-adic cyclotomic character and Y, : Gx — F,' the mod p cyclotomic
character. It is well-known that X,|r, = 07 where 6;: I — F) is the fundamental character of
level 1. In particular, denoting by K" the maximal unramified extension of K, we have [K" (1) :

K" = (p—1)/ged(e,p—1).

Proposition 5.2. (1) Minimum c-weights are invariant under finite unramified extensions of the
base field K.

(2) The c-weight of an unramified torsion Z,-representation of Gk is 0.

(3) Putv = (p—1)/ged(e,p —1). Let s be an integer such that v(s — 1) < w.(T) < vs. Then we
have v(s — 1) < w(TV) < vs. In particular, if (p — 1) | e, then we have we(T) = w(TV).

(4) Let T be an Fy-representation of Gk and i the largest tame inertia weight of T. Then we have
we(T) > i.

Proof. (1) Let T be a torsion Z,-representations of Gx. Let K’ be a finite unramified extension
of K. It suffices to prove that T has crystalline lifts of weight < r if and only if T'|g,, has
crystalline lifts of weight < r. The “only if” assertion is clear and thus it is enough to prove
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the “if” assertion. Let f: L — T|g,, be a crystalline lift of T'|¢g,, of weight < r. Since K'/K
is unramified, Indg’;/L is a lattice in some crystalline Q,-representation of G g with Hodge-Tate
weights in [0, r]. Furthermore, the map

Indg® L = Z,[Gk] ©z,¢) L = T, 0@z o(f(z))

is a G g-equivariant surjection and hence we have done.

(2) The result follows from (1) immediately.

(3) Taking a finite unramified extension K’ of K with the property [K" (u,) : K"] = [K'(up) : K'],
it follows from Lemma 4.19 that we have v(s — 1) < w(T|g,.) < vs if and only if we have
v(s —1) <w.((T")|g;. ) < vs. Thus the result follows from the assertion (1).

(4) If ew.(T) > p—1, then there is nothing to prove, and thus we may suppose that ew.(T) < p—1.
Let L — T be a crystalline lift of T of weight < w.(T). Since the tame inertia polygon of L lies on
the Hodge polygon of L ([CS, Théoréme 1]), the largest slope of the former polygon is less than or
equal to that of the latter polygon. This implies w.(T) > i. O

Theorem 5.3. Let T be a tamely ramified Fp-representation of G . Let i be the largest tame
inertia weight of T. Then we have w.(T) = min{h € Z>o;h > i}.

Proof. The proof below is essentially due to Caruso and Liu [CL2, Theorem 5.7], but we give a
proof here for the sake of completeness. Put ig = min{h € Z>o;h > i}. By Proposition 5.2 (4),
we have w.(T) > ig. Thus it suffices to show w.(T) < ip. We note that T'|;, is semi-simple.
Any irreducible component Tp of T'|1, is of the form Fpa (67", -~ 0}4) for one sequence of integers
between 0 and p — 1, periodic of period d. We decompose n; = em; + n; by integers 0 < m; <ig
and 0 < n; < e. Now we define an integer k;, by

e if1<0<my,
kjo = n; if {=m;+1,
0 ifl>my;+1.

Note that we have n; = Zé"zl k;.¢, and also have an Ix-equivariant surjection

To=Fu@py .. 00 = Q) Fu@yi . 005« &Q  Ful@yi .. 055
=1,...i0,F £=1,...i0,F,
By a classical result of Raynaud, each de(ﬁsji‘ . -~t9§if ) comes from a finite flat group scheme
defined over K. We should remark that such a finite flat group scheme is in fact defined over a
finite unramified extension of K. Since any finite flat group scheme can be embedded in a p-divisible
group, the above observation implies the following: there exist a finite unramified extension K’
over K, a lattice L in some crystalline Q,-representation of G+ with Hodge-Tate weights in [0, 4]
and an [x-equivariant surjection f: L — T. The map f induces an Ix-equivariant surjection
f: L/pL — T. Since L/pL and T is finite, we see that f is in fact G gr-equivariant for some finite
unramified extension K" over K’, and then so is f. Therefore, we obtain w.(T|q,., ) < io. By
Proposition 5.2 (1), we obtain w¢(T") < ij. O

5.2 Rank 2 cases

We give some computations of c-weights related with torsion representations of rank 2. We prove
the following lemma by an almost identical method with [GLS, Lemma 9.4].

Lemma 5.4. Let K be a finite extension of Q,. Let E be a finite extension of Q, with residue
field F. Let i and v be integers such that v is divisible by [K(up) : K]. Suppose that T is an
F-representation of Gk which sits in an exact sequence (x): 0 — F(i) - T — F — 0 of F-
representations of Gx. Then there exist a ramified degree at most 2 extension E' over E, with
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integer ring Og:, and an unramified continuous character x: Gxg — F* with trivial reduction
such that (%) is the reduction of some exact sequence 0 — Opy (XX;“’) — A — O — 0 of free
Opg -representations of G . Furthermore, we have the followings:

(1) Ifi+v=1o0rx,"" #1, then we can take E' = E and x = 1.

(2) If i+ v =0 and T is unramified, then we can take E' = E, x =1 and A to be unramified.

Proof. Suppose i + v = 1 (resp. X~ # 1). Then the map H'(K,Op(i +v)) — H'(K,F(i))
arising from the exact sequence 0 — Og(i +v) = Og(i +v) — F(i) — 0 is surjective since
H?(K,Og(1)) ~ Og (resp. H*(K,Og(i + v)) = 0), where w is a uniformizer of E. Hence we
obtained a proof of (1). The assertion (2) follows immediately from the fact that the natural map
HY(Gk/Ik,Op) — H Gk /Ix,F) is surjective.

In the rest of this proof, we always assume that i+v # 1 and y, * = 1. Let L € H'(K,F(i)) be
a 1-cocycle corresponding to (). We may suppose L # 0. For any unramified continuous character
x: Gg — F* with trivial reduction, we denote by

8y HY (K, F(i)) = H*(K,Op(xx;,™))
(resp. 5?(: HY(K, E/(’)E(X_llej_i_”)) — H'(K,TF))
the connection map arising from the exact sequence 0 — Og(xx5) 2 Op(xxpt) = F(i) = 0

(resp. 0 = F = E/Op(x'x; ") 3 E/Op(x 'x; ") = 0) of Op|Gk]-modules. Consider the
following commutative diagram:

HY(K,F(i)) x H'(K,F) E/Og
@i ﬁ
H*(K, Op(xx;™)) X HY(K,E/Op(x"'xp~"™")) E/Og

Since the above two pairings are perfect, we see that L lifts to H' (G, OE(XX?_V)) if and only if
H is contained in the image of 07. Here, H C H'(K,F) is the annihilator of L under the local Tate
pairing H'(K,F(i)) x HY(K,F) — E/Og. Let n > 1 be the largest integer with the property that
X 'xp """ = 1mod w" (such n exists since x, = 1and 1 —i—v # 0). We define a,: Gx = Op
by the relation x~'x, 7" = 1+w"ay, and denote (o, mod w): Gx — F by @,. By definition, &,
is a non-zero element of H'(K,F), and it is not difficult to check that the image of 52 is generated
by a&,. If &, is contained in H for some x, we are done. Suppose this is not the case.

Suppose that H is not contained in the unramified line in H'(K,F). We claim that we
can choose x such that &, is ramified. Let m be the largest integer with the property that
(X "xp7")|1x =1 mod w". Clearly, we have m > n. If m = n, then we are done and thus
we may assume m > n. Fix a lift ¢ € Gg of the Frobenius of K. We see that &, (g) # 0. Let
X' be the unramified character sending g to 1 + @w™a,(g). Then X’ has trivial reduction. After
replacing x with xx’, we reduce the case where m = n and thus the claim follows. Suppose @,
is ramified. Then there exists a unique Z € F* such that &, + uz € H where uz: Gg — F is
the unramified character sending g to . Denote by x” the unramified character sending g to
1+ w"ay(g). Replacing x with xx”, we have done.

Suppose that H is contained in the unramified line in H'(K,F) (thus H and the unramified
line coincide with each other). By replacing E with E(y/w), we may assume that n > 1. Let xo be
a character defined by x times the unramified character sending our fixed g to 1+ w. Since n > 1,
we see that Xglxll)_i_” = 1 mod w and Xallej_i_” # 1 mod w?. We define a,,: Gk — Of by
the relation xal)(;,”;" = 14 wa,,, and denote (o, mod w): Gx — F by &,,. By definition and
the assumption n > 1, &, is a non-zero unramified element of H (K, F), hence it is contained in
H. Therefore, we have done. O

Lemma 5.5. Let K be a finite extension of Qp, n > 2 an integer and x: Gxg — E* an unramified
character. Then any E-representation of G which is an extension of E by E(xx}) is crystalline.
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Proof. This is well-known; for example, see the argument of [BK, Section 3]. O

Proposition 5.6. Suppose p > 2. Let K be a finite unramified extension of Q,. Let T €
Repyo. (Gk) be killed by p and sit in an ezact sequence 0 — F,(i) - T — F, — 0 of F,-
representations of G . Then we have the followings:

(1) If i =0 and T is unramified, then we have w.(T) = 0.

(2) If i =0 and T is not unramified, then we have w.(T) =p — 1.

) Ifi=2,...,p—2, then we have w.(T) = i.

Proof. (1) By Lemma 5.4 (2), we know that T has unramified (and thus crystalline) lift, which
implies w¢(T") = 0.

(2) By Lemmas 5.4 and 5.5, it suffices to prove that T is not torsion crystalline with Hodge-Tate
weights in [0, p — 2] if T is not unramified. Let K¢ be the definition field of the representation T' of
Gk and put G = Gal(K7/K). Let G7 be the upper numbering j-th ramification subgroup of G' (in
the sense of [Se]). Since T is not unramified and killed by p, we see that K is a totally ramified
degree p extension over K. Thus G is the wild inertia subgroup of G and G* = G, which does not
act on T trivial by the definition of G. Thus we obtain the desired result by ramification estimates
of [Fol] (or [Abl]) for torsion crystalline representations with Hodge-Tate weights in [0,p — 2]: if
T is torsion crystalline with Hodge-Tate weights in [0,p — 2], then G7 acts on T trivial for any
i>{@=2)/(p-1).

(3) The result follows immediately from Proposition 5.2 (4), Lemmas 5.4 and and 5.5. O

Corollary 5.7. Let K be a finite unramified extension of Q,. Then any 2-dimensional Fp-
representation of Gy is torsion crystalline with Hodge-Tate weights in [0,2p — 2].

Proof. If T is irreducible, the result follows from Theorem 5.3. Assume that T is reducible. Since K
is unramified over @, any continuous character Gx — F is of the form X)Z; for some unramified
character y and some integer i. Replacing K with its finite unramified extension, we may assume
that T sits in an exact sequence 0 — F,,(i) = T — F,(j) — 0 of F,,-representations of Gk, where
i and j are integers in the range [0,p — 2] (we remark that w.(T) is invariant under unramified
extensions of K by Proposition 5.2 (1)). It follows from Lemmas 5.4 and 5.5 that w.(T(—j)) < p.
Therefore, we obtain w.(T) = we(T(—j) ®r, Fp(j)) < we(T(=5)) + we(Fp(j)) <p+(p—-2) =
2p — 2. O

Remark 5.8. The author does not know whether 2p — 2 in the statement of Corollary 5.7 is
optimal or not.

5.3 Extensions of [, by F,(1) and non-fullness theorems

By Lemma 5.4, we know that the c-weight w.(T") of an Fp-representation T' of G which sits in
an exact sequence 0 — F,(1) = T — F, — 0 of F,-representations of G, is less than or equal
to p. Let us calculate w.(T") for such 7" more precisely. We should remark that such T is written
as p-torsion points of a Tate curve. Hence we consider torsion representations coming from Tate
curves.

Let vk be the valuation of K normalized such that vg (K*) = Z, and take any ¢ € K* with
vk (q) > 0. Let E,; be the Tate curve over K associated with ¢ and E,[p"] the module of p”-torsion
points of E, for any integer n > 0. It is well-known that there exists an exact sequence

(#) 0— ppn — Ey[p"] = Z/p"Z — 0

of Z,|Gk]-modules. Here, pi,n is the group of p™-th roots of unity in K. Let x,: Gx — ppn be
the 1-cocycle defined to be the image of 1 for the connection map H°(K,Z/p"Z) — H (K, pim)
arising from the exact sequence (#). Then z,, corresponds to ¢ mod (K*)P" via the isomorphism
K*/(K*)P" ~ HY(K, jipn) of Kummer theory. Thus the exact sequence (#) splits if and only if
q e (K*)P".

First we consider the case p | vk (q) (i-e. peu ramifié case).
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Lemma 5.9. Let K be a finite extension of Qp. If p | v (q), then E4[p] is the reduction modulo p
of a lattice in some 2-dimensional crystalline Q,-representation with Hodge-Tate weights in [0, 1].

Proof. Since p | vi(q), there exists ¢ € K* such that vk (¢’ —1) > 0 and ¢ = ¢’ mod (K *)P.
Consider the exact sequence 0 — Z,(1) - L — Z,, — 0 of Z,-representations of G corresponding
to ¢’ via the isomorphism H'(K,Z,(1)) ~ lim K> /(K *)P" of Kummer theory. By the condition
g = ¢’ mod (K*)?, the reduction modulo p of L is E4[p]. Thus it suffices to show that V :=
Qp ®z, L is crystalline. Take a system (g;,)n>0 of p-power roots of ¢’ in O such that ¢; = ¢
and (an)P = ¢, for any n > 0. We also take a system (e/,),>0 of p-power roots of unity in O
such that e = 1, €] # 1 and (e],,,)? = ¢, for any n > 0. We define a map c: Gx — Z, by
glqn) = (gl )qn for any n > 0. Then we can choose a basis e, f of V' such that g(e) = x,(g)e
and g(f) = c(g)e + f for any g € Gx. Put ¢’ = (¢, mod p)n>0 € R, £ = (&, mod p),>0 € R and

—1log[e'] € Aeris. By the condition vg (¢ — 1) > 0, we see ([¢/] —1)¢ € Fil'W(R) + pW (R)
and thus log[q] converges in B, . With these notations, we see that the W (k)[1/p]-vector space
(Beris ®q, V)@ is of dimension 2 with basis e; := t~!e and ey := log[q'] -t~ le 4 f. Therefore, V
is crystalline. O

Corollary 5.10. Suppose that K is a finite extension of Qp, (p — 1) te and p | vk(q). Then we
have w.(E,[p]) = 1.

Proof. By the assumption (p — 1) 1 e, we know that the largest tame inertia weight of E,[p] is
positive. Thus Proposition 5.2 (4) shows w.(E,[p]) > 1. The inequality w.(E,[p]) < 1 follows from
Lemma 5.9. O

Next we consider the case pf vk (q) (i.e. trés ramifié case).

Proposition 5.11. Ife(r — 1) <p—1 and p { v (q), then E4[p"] is not torsion crystalline with
Hodge-Tate weights in [0, 7] for any n > 0.

Remark 5.12. If e = 1, the fact that E;[p"] is not torsion crystalline with Hodge-Tate weights
in [0, p — 1] immediately follows from the theory of ramification bound as below. We may suppose
n = 1. Suppose E.[p] is torsion crystalline with Hodge-Tate weights in [0,p — 1]. Then the upper
numbering j-th ramification subgroup GY; of Gk (in the sense of [Se]) acts trivially on E,[p] for
any j > 1 ([Abl, Section 6, Theorem 3.1]). However, this contradicts the fact that the upper
bound of the ramification of E;[p]is 1+ 1/(p — 1).

Proof of Proposition 5.11. We may suppose n = 1. We choose any uniformizer 7’ of K. Putting
vr(q) = m, we can write ¢ = (7')™x with some unit x of the integer ring of K. Since m is
prime to p, we have a decomposition z = (py™ in K* for some £ > 0 prime to p and y € K
with vk (y — 1) > 0. Here (y is a (not necessary primitive) ¢-th root of unity. Since ¢ is prime
to p, we have ¢, = (}” for some integer s. We put 7 = 7’y. This is a uniformizer of K. Choose
any p-th root 7 of m and put ¢1 = (7" € K(m)*. Then we have ¢ = ¢} € (K(m1)*)? and in
particular, the exact sequence (#) (for n = 1) splits as representations of Gal(K /K (m1)). Now
assume that E,[p] is torsion crystalline with Hodge-Tate weights in [0,7]. Then (#) (for n = 1)
splits as representations of Gk by Theorem 1.2. This contradicts the assumption p t vk (q) (and
hence q ¢ (K*)P). O

Now we put ry, = min{r € Zsg;e(r —1) > p — 1}. Recall that we have [K"(u,) : K"] =
(p—1)/ged(e,p—1).
Lemma 5.13. Let K be a finite extension of Q,. Then Eq4[p] is torsion crystalline with Hodge- Tate
weights in [0,1+ (p — 1)/ged(e,p — 1)].

Proof. Taking a finite unramified extension K’ of K such that [K" (u,) : K| = [K'(up) : K'],
we obtain w.((£,[p])|a,,) <1+ (p—1)/ged(e,p — 1) by Lemma 5.4. Thus we have w(Eq4[p]) <
1+ (p—1)/ged(e,p — 1) by Proposition 5.2 (1). O
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Corollary 5.14. Suppose that K is a finite extension of Qp, and also suppose e | (p — 1) or
(p—1) | e. We further suppose that p{vk(q). Then we have w.(Eq[p]) = 1.

Proof. We have w.(E4[p]) < ry by Lemma 5.13. In addition, we also have w.(Eq[p]) > r{ by
Proposition 5.11. O

Lemma 5.13 gives some non-fullness results on torsion crystalline representations.

Corollary 5.15. Suppose that K is a finite extension of Qp. If r > 1+ (p—1)/gcd(e,p —1), then
the restriction functor Repia.  (Gr) — Repyo, (G1) is not full.

Proof. Two representations E[p] and F),(1) ®F, are objects of Rep{,,(Gx) by Lemma 5.13. They
are not isomorphic as representations of Gx but isomorphic as representations of G;. Thus the
desired non-fullness follows. O

Corollary 5.16. Suppose that any one of the following holds:
e p=2 and K is a finite extension of Qo (in this case rj) = 2);
e K is a finite unramified extension of Q, (in this case r =p);
e K is a finite extension of Q,(pp) (in this case r{, = 2).

Then the restriction functor Repl<™ (G k) — Repyy, (G1) is not full.

tor
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