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Abstract

We give a criterion for two ℓ-adic Galois representations of an alge-
braic number field to be isomorphic when restricted to a decomposition
group, in terms of the global representations mod ℓ. This is applied
to prove a generalization of a conjecture of Rasmussen-Tamagawa [14]
under a semistablity condition, extending some results [12] of one of
the authors. It is also applied to prove a congruence result on the
Fourier coefficients of modular forms.
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1 Introduction

Let K be an algebraic number field (:= finite extension of Q) and let GK =
Gal(K̄/K) denote its absolute Galois group, where K̄ is a fixed algebraic
closure of K. Choosing an extension of v to K̄, we denote by Gv (resp.
Iv) the decomposition (resp. inertia) group of v in GK . Let E be another
algebraic number field, λ a finite place of E of residue characteristic ℓ, and
Eλ the completion of E at λ. We denote by OE and OEλ

the integer rings of
E and Eλ, respectively. Let fλ denotes the absolute residue degree of λ. We
identify any finite place v of an algebraic number field with the corresponding
prime ideal, and denote its residue field by kv and put qv := #kv. Throughout
the paper, we fix K, E, and a finite place v of K, and let the finite place λ of
E of residue characteristic ℓ vary. We denote by ℓ the residue characteristic
of λ, and assume v ∤ ℓ, while u will denote another finite place of K lying
above ℓ. All representations of Galois groups denoted V are either Qℓ- or
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Eλ-linear of finite dimension, and assumed to be continuous with respect to
the natural topologies. Their “reductions” will be denoted by V̄ .

In the following, n and e are fixed integers ≥ 1 and e is assumed to
be divisible by the absolute ramification index e(Ku/Qℓ) of Ku/Qℓ. For

K, u, v, E, λ, n, e as above and a real number b, let Rep
(G)
E,λ,n(K;u, b, e, v) de-

note the set of n-dimensional Eλ-linear representations V of GK which have
the following properties:

– V is semistable at v (in the sense that the action of the inertia is unipotent
(including the case where it is trivial)),
– V is E-integral at v in the sense of Definition 2.2,
– V becomes semistable (in the sense of Fontaine [7]) over a finite extension
K ′

u′ of Ku whose absolute ramification index e(K ′
u′/Qℓ) divides e,

– V has Hodge-Tate weights ⊂ [0, b] at u, and
– V is of type (G) in the sense of Definition 2.4,

Our first main result is:

Theorem 1.1. For any K,E, n, b, v as above, there exists a constant C =
C([E : Q], n, b, e, qv) such that the following holds: For any prime number ℓ >
C, any places u of K and λ of E both lying above ℓ, and any representations
V ∈ Rep

(G)
E,λ,n(K;u, b, e, v) and V ′ ∈ Rep

(G)
E,λ,n(K;u, (ℓ−2)/e2, e, v), if one has

V ≡ss V
′ (mod λ) both as Gu-representations and Gv-representations, then

one has V ≃ss V
′ as Gv-representations. [In particular, if V ≡ss V

′ (mod λ)
as GK-representations, then V ≃ss V

′ as Gv-representations.]
The constant C can be taken explicitly to be

C := max{e2b+ 1,

(
2

(
n

[n/2]

)
qnbv

)[E:Q]/fλ

},

where [x] denotes the largest integer not exceeding x.

Here, the meaning of the notations ≡ss and ≃ss is as follows: we say
V ≡ss V

′ (mod λ) as Gv-representations if T and T ′ are Gv-stable OEλ
-

lattices in V and V ′, respectively, and the semisimplifications (T/λT )ss and
(T ′/λT ′)ss are isomorphic as kλ-linear representations of Gv (this definition
does not depend on the choice of the lattices). We say also V ≃ss V

′ as
Gv-representations if their semisimplifications are isomorphic as Eλ-linear
representations of Gv.

To state a variant of this theorem, let Rep
(G)
E,λ,n(K;u, b, e, v)′ be the set of

n-dimensional Eλ-linear representations V of GK which have the following
properties:
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– V is E-integral at v,
– V becomes semistable over a finite extension K ′

u′ of Ku whose absolute
ramification index e(K ′

u′/Qℓ) divides e,
– V has Hodge-Tate weights ⊂ [0, b] at u, and
– V is of type (G).

Thus Rep
(G)
E,λ,n(K;u, b, e, v)′ contains Rep

(G)
E,λ,n(K;u, b, e, v), and the difference

is that the elements V of the former are not assumed to be semistable at v.
Let Wv(V ) denote the multi-set of Weil weights of V (Def. 2.1) considered
as a Qℓ-linear representation of Gv.

Theorem 1.2. For K,E, n, b, v as above, the following holds with the same
constant C = C([E : Q], n, b, e, qv) as in Theorem 1.1: For any prime number
ℓ > C, any places u of K and λ of E both lying above ℓ, and any representa-
tions V ∈ Rep

(G)
E,λ,n(K;u, b, e, v)′ and V ′ ∈ Rep

(G)
E,λ,n(K;u, (ℓ−2)/e2, v)′, if one

has V ≡ss V
′ (mod λ) both as Gu-representations and Gv-representations,

then one has Wv(V ) = Wv(V
′). [In particular, if V ≡ss V

′ (mod λ) as
GK-representations, then Wv(V ) = Wv(V

′).]

Remark. If we consider representations of type (W) at all places v|q for a
fixed prime number q and of Hodge-Tate type at all places u|ℓ, we can prove
versions of Theorems 1.1 and 1.2 without assuming “type (G)” but with a
larger constant

C ′ := max{e2b+ 1,

(
2

(
n

[n/2]

)
qnb[K:Q]/[Kv :Qq ]

)[E:Q]/fλ

}.

The proofs are basically the same as in the case of type (G) but use Propo-
sition 2.8 instead of the equality (G) in Definition 2.4.

The constant C = C([E : Q], n, b, e, qv) above depends on the coefficient
field E. By working mod ℓ rather than mod λ, however, we can suppress this
dependence on E as follows:

Theorem 1.3. For any K,E, n, b, v as above, there exists a constant C̃ =
C̃(n, b, e, qv) such that the following holds: For any prime number ℓ > C,
any places u of K and λ of E both lying above ℓ, and any representations
V ∈ Rep

(G)
E,λ,n(K;u, b, e, v) and V ′ ∈ Rep

(G)
E,λ,n(K;u, (ℓ−2)/e2, e, v), if one has

V ≡ss V
′ (mod λ) as Gu-representations and det(T − Frobv|V ) ≡ det(T −

Frobv|V ′) (mod ℓOE), then one has V ≃ss V
′ as Gv-representations. [In
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particular, if V ≡ss V
′ (mod ℓ) as GK-representations, then V ≃ss V

′ as
G′

v-representations.]
The constant C̃ can be taken explicitly to be

C̃ := max{e2b+ 1, 2

(
n

[n/2]

)
qnbv }.

After recalling some notions and results on Galois representations in Sec-
tion 2, we give proofs of the above theorems in Section 3 and several corollar-
ies of Theorem 1.2 in Section 4. In Section 5, we apply Theorem 1.3 with E
a Hecke field to prove a congruence result on the Fourier coefficients of mod-
ular forms of various levels, where the “independence of E” in the theorem
plays a significant role.

Acknowledgments. The second-named author thanks Eknath Ghate for his
invitation to TIFR, Mumbai, and his interest in this work, which motivated
us to write down the results; both the authors are grateful to him for his useful
comments on the first version of this paper. The authors thank Tetsushi Ito
and Yoichi Mieda for their useful information on ℓ-adic étale cohomology.
This work is supported in part by JSPS Fellowships for Young Scientists and
JSPS KAKENHI 22540024.

2 Weights

2.1. Weil weights. Let V be a Qℓ-linear representation of Gv. Choose a
lift σv ∈ Gv of the qv-th power Frobenius Frobv ∈ Gkv and let P (T ) =
det(T − σv|V ) be the characteristic polynomial of σv acting on V . Recall
that an algebraic integer α is said to be a q-Weil integer of weight w if
|ι(α)| = qw/2 for any field embedding Q̄ ↪→ C, where | · | denotes the absolute
value of C.

Definition 2.1. We say that V is of type (W) at v if all the roots of P (T ) are
qv-Weil integers. If this is the case, we call the weights of the roots of P (T )
the Weil weights of V at v, and denote by Wv(V ) the multi-set consisting of
them.

This definition does not depend on the choice of the Frobenius lift σv.
Also, the multi-set Wv(V ) is unchanged by a finite extension of the base
field Kv.
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Now suppose V is an Eλ-linear representation of Gv. The action of the
inertia subgroup Iv on V is quasi-unipotent ([22], Appendix); thus there
exists a finite extension K ′

v′/Kv such that the inertia subgroup Iv′ for K
′
v′

acts unipotently on V (or equivalently, trivially on the semisimplification V ss

as an Eλ[Gv]-module). Hence we can consider the characteristic polynomial
P ′(T ) = det(T − Frobv′|V ss) of the Frobenius Frobv′ at v

′ acting on the Eλ-
vector space V ss. (Note that the characteristic polynomial taken with V ss

viewed as a Qℓ-vector space is the product of the “conjugates” of this P ′(T ).)

Definition 2.2. An Eλ-linear representation V of Gv is said to be E-integral
at v if, for any finite extension K ′

v′/Kv for which the inertia action on V is
unipotent, the characteristic polynomial P ′(T ) defined as above has coeffi-
cients in OE.

Note that an E-integral representation of type (W) at v has Weil weights
≥ 0 at v.

For example, if X is a proper smooth variety over Kv, then the Qℓ-
linear dual V = Hr

et(XK̄v
,Qℓ)

∗ of the r-th ℓ-adic étale cohomology group
of XK̄v

:= X ⊗Kv K̄v is conjectured to be Q-integral (cf. [18], C4). This
conjecture is known to be true under the assumption of the existence of the
Künneth projector ([16], Cor. 0.6 (1)).

We note here that, by the next lemma, there are totally ramified exten-
sions among the finite extensions K ′

v′/Kv as above (so that, when we want
to compare the characteristic polynomials P ′(T ) for different V ’s, we can use
a K ′

v′ with residue degree f = 1):

Lemma 2.3. If L/Kv is a finite Galois extension, then there exists a totally
ramified subextension L′/Kv of L/Kv such that L = L′L0, where L0 is the
maximal unramified subextension of L/Kv.

Proof. If L/Kv is abelian, this is a consequence of local class field theory.
Suppose L/Kv is non-abelian. We proceed by induction on the extension
degree [L : Kv]. Let σ be a lift in G := Gal(L/Kv) of the Frobenius in
Gal(L0/Kv), and set H := ⟨σ⟩. Then we have H ⫋ G, and the extension
LH/Kv is a non-trivial totally ramified subextension of L/Kv. Repeating this
process with L/Kv replaced by L/LH , we are reduced to the case of abelian
L/Kv.

2.2. Hodge-Tate weights. Recall that u is a finite place of K lying above ℓ. A
Qℓ-linear representation V of Gu is said (cf. [7]) to be of Hodge-Tate type of
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Hodge-Tate weights h1, ..., hn, where n = dimQℓ
(V ) and hi are integers, if one

has V ⊗Qℓ
Cℓ ≃ Cℓ(h1)⊕ · · · ⊕ Cℓ(hn) as a Cℓ-semilinear Gu-representation,

where Cℓ(h) denotes the h-th Tate twist of the completion Cℓ of a fixed
algebraic closure Q̄ℓ of Qℓ. If this is the case, let HTu(V ) denote the multi-
set of Hodge-Tate weights of V . Note that HTu(V ) is unchanged by a finite
extension of the base field Ku.

2.3. Tame inertia weights. Let Itame
u the tame inertia group of K at u (=

the quotient of the inertia group Iu at u by its maximal pro-ℓ subgroup).
A character φ : Itame

u → F×
ℓh

can be written in the form φ = ψt1
1 · · ·ψth

h ,
where ψi are the fundamental characters of level h ([19], §1.7) and 0 ≤ ti ≤
ℓ − 1. Then we set TIu(φ) := {t1/e, ..., th/e} (as a multi-set), where e =
e(Ku/Qℓ) is the ramification index of K/Q at u. Note that, by §1.4 of [19],
TIu(φ) is unchanged by a “moderately” ramified extension of Ku; precisely
speaking, if K ′

u′/Ku is a finite extension of ramification index e(K ′
u′/Ku) <

(ℓ− 1)/max{tj| 1 ≤ j ≤ h}, then we have TIu′(φ|Itame
u′

) = TIu(φ).
Let V be a Qℓ-linear representation of Gu, and T a Gu-stable Zℓ-lattice

of V . Set T̄ := T/ℓT . Then its semisimplification T̄ ss (as an Fℓ[Gu]-module)
is tamely ramified (note that its isomorphism class does not depend on the
choice of T ), and the action of the tame inertia group Itame

v is described by a
sum of characters φi : I

tame
v → F×

ℓhi
. Then we define TIu(V ) (as a multi-set)

to be the union of the TIu(φi) for all i.

2.4. Weights of geometric Galois representations. Let V be a Qℓ-linear
representation of GK . For any multi-set X, we write

Σ(X) :=
∑
x∈X

x,

whenever the sum on the right-hand side has a meaning.

Definition 2.4. We say that V is of type (G) if it is of type (W) at v, of
Hodge-Tate type at u, and one has

(G) Σ(Wv(V )) = 2Σ(HTu(V )).

If this is the case, we denote this value by w(V ) and call it the total weight
of V .
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Note that Σ(Wv(V )) and Σ(HTu(V )) are respectively theWeil and Hodge-
Tate weights of detQℓ

(V ).
Typical examples of V of type (G) include the Tate twists Qℓ(r) for r ∈ Z

and their twists by characters of finite order; their total weights are 2r.
A priori, the notion of type (G) depends on the places v ∤ ℓ and u | ℓ (so

it should be called, say, type (Gu,v)), but in practice (i.e., in case V comes
from algebraic geometry), it should be independent of the places. The proof
of the following proposition, which is modeled on the proof of Lemma 2.1 of
[17], has been communicated to us by Yoichi Mieda, to whom we are grateful:

Proposition 2.5. Let X be a proper smooth variety over K. Let V =
Hr

et(XK̄ ,Qℓ)
∗ be the Qℓ-linear dual of the r-th ℓ-adic étale cohomology group

of XK̄ := X ⊗K K̄, and put n = dimQℓ
(V ). Then we have:

(i) det(V ) is isomorphic to the twist of Qℓ(nr/2) by a character ε of order
at most 2. If r is odd, then ε = 1.

(ii) V is of type (G) with respect to any finite places u | ℓ and v ∤ ℓ of K.

Note that, in (i), the Betti number n is even if r is odd by, say, the Hodge
symmetry.

Proof. (ii) follows from (i) immediately. To show (i), consider the charac-
ter ε : GK → Qℓ

× defined by det(V )(−nr/2), where (−nr/2) denotes the
(−nr/2)-th Tate twist. If v is a finite place of K where X has good reduc-
tion, then by [5] V is Q-integral and has all Weil weights equal to r. Hence
ε(Frobv) is a Weil integer in Q of weight 0, i.e., a unit of Z. Since Frobv’s
for such v’s are dense in GK , we see that ε takes values in Z×. The second
statement of (i) follows from Corollary 3.3.5 of [23].

In some cases, we can expect the total weight w(V ) to be equal also to
2Σ(TIu(V )):

Proposition 2.6. Let V be a Qℓ-linear semistable representation of Gu with
HTu(V ) ⊂ [0, b]. If e(Ku/Qℓ)b < ℓ− 1, then we have:

(i) ([3], Thms. 1.0.3 and 1.0.5) TIu(V ) ⊂ [0, b].

(ii) ([4], Thm. 1) Σ(HTu(V )) = Σ(TIu(V )).

The equality (G) holds in general if K = Q:

Lemma 2.7. Let q be a prime number ̸= ℓ. If V is a Qℓ-linear representation
of GQ which is of type (W) at q and of Hodge-Tate type at ℓ, then V is of
type (G).
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Proof. By taking the determinant, we are reduced to the case dimQℓ
(V ) = 1.

Then V is geometric (in the sense of Fontaine-Mazur [9] (note that a one-
dimensional Qℓ-representation is de Rham if and only if it is Hodge-Tate)
and hence is a twist by a finite character of Qℓ(r) for some integer r. Thus
(G) holds for V .

If K ̸= Q, the equality (G) may not hold even for a geometric representa-
tion. For example, let K be an imaginary quadratic field, E an elliptic curve
over K such that EndK(E) ⊗Z Q ≃ K, and ℓ a prime number which splits
in K as ℓ = λλ′. Let V be a one dimensional GK-subrepresentation of the
ℓ-adic Tate module Tℓ(E)⊗Zℓ

Qℓ of E. Then V is of type (W) of Weil weight
1 at any v ∤ ℓ, while it is of Hodge-Tate type of Hodge-Tate weight 0 or 1 at
λ.

If we do not assume the equality (G), we can in fact prove an equality
which is fairly close to (G) under a mild condition:

Proposition 2.8. Let V be a Qℓ-linear representation of GK and q a prime
number ̸= ℓ. Assume V is of type (W) at all places v|q and of Hodge-Tate
type at all places u|ℓ. Then we have∑

v|q

[Kv : Qq]Σ(Wv(V )) = 2
∑
u|ℓ

[Ku : Qℓ]Σ(HTu(V )).

Proof. The induced representation Ind
GQ
GK

(V ) is a representation of GQ which
is of type (W) at q and of Hodge-Tate type at ℓ, and hence we have

Σ(Wq(Ind
GQ
GK

(V ))) = 2Σ(HTℓ(Ind
GQ
GK

(V )))

by Lemma 2.7. We then observe that

Wq(Ind
GQ
GK

(V )) =
⨿
v|q

[Kv : Qq]Wv(V ),

HTℓ(Ind
GQ
GK

(V )) =
⨿
u|ℓ

[Ku : Qℓ]HTℓ(V ),

where the multiple mX of a multi-set X by a positive integer m is defined
in the obvious manner. Indeed, we have

(Ind
GQ
GK

(V ))|Gq =
⊕
v|q

Ind
Gq

Gv
(V |Gv)
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by Mackey’s formula ([21], Section 7.3, Proposition 22), and

Wq(Ind
Gq

Gv
(V |Gv)) = [Kv : Qq]Wv(V |Gv)

by definition of the induced representation and by the invariance of the Weil
weights by finite extensions of the base field. Similar equalities hold for u|ℓ
and IndGℓ

Gu
(V |Gu).

3 Proof of the theorems

We begin with a version of the gap principle:

Lemma 3.1. Let E, n, v be as before, and let w ∈ R≥0 be given. Then
there exists a constant C1 = C1([E : Q], n, qwv ) > 0 such that, for any prime
ℓ > C1 and for any n-dimensional Eλ-linear representations V, V ′ of Gv

which are of type (W), E-integral at v and such that Σ(Wv(V )),Σ(Wv(V
′))

are in [0, [Eλ : Qℓ] · w], the following (i) and (ii) hold:

(i) If V ≡ss V
′ (mod λ) as Gv-representations, then Wv(V ) = Wv(V

′).

(ii) Assume further that V ss and (V ′)ss are unramified. If V ≡ss V
′ (mod λ)

as Gv-representations, then V ≃ss V
′ as Gv-representations.

The constant C1 can be taken explicitly to be

C1 :=

(
2

(
n

[n/2]

)
qw/2
v

)[E:Q]/fλ

.

We have also the following mod ℓ version of (ii) above, in which the
constant is independent of [E : Q]:

Lemma 3.2. Let E, n, v be as before, and let w ∈ R≥0 be given. Then
there exists a constant C̃1 = C̃1(n, q

w
v ) > 0 such that, for any prime ℓ > C1

and for any n-dimensional Eλ-linear representations V, V ′ of Gv such that
V ss, (V ′)ss are unramified and which are of type (W), E-integral at v and
such that Σ(Wv(V )),Σ(Wv(V

′)) are in [0, [Eλ : Qℓ] · w], the following holds:
If det(T−Frobv|V ) ≡ det(T−Frobv|V ′) (mod ℓOE)), then one has V ≃ss V

′

as Gv-representations.
The constant C̃1 can be taken explicitly to be

C̃1 := 2

(
n

[n/2]

)
qw/2
v .
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Proof. As the proofs are similar, we only give a proof of Lemma 3.1. Choose
a totally ramified extension K ′

v′/Kv over which V and V ′ become semistable
(cf. Lem. 2.3). Let P (T ) = det(T − Frobv′ | V ss) and P ′(T ) = det(T −
Frobv′| (V ′)ss) be the characteristic polynomials (taken as Eλ-linear repre-
sentations) of the Frobenius Frobv′ at v′ acting on the semisimplifications
V ss and (V ′)ss, respectively. By assumption, they have coefficients in OE.
By assumption on the weights, for any embedding E ↪→ C, the terms of
T n−i have coefficients of absolute value ≤

(
n
i

)
q
w/2
v Note that Σ(Wv(V ))

is the sum of the Weil weights of V as a Qℓ-linear representation, and
hence the sum of the Weil weights of the roots of P (T ) is in [0, w]). Set

C1 := (2max0≤i≤n

(
n
i

)
q
w/2
v )[E:Q]/fλ = (2

(
n

[n/2]

)
q
w/2
v )[E:Q]/fλ . Then if ℓ > C1, we

have

V ≡ss V ′ (mod λ) as Gv-representations

⇐⇒ P (T ) ≡ P ′(T ) (mod λ)

⇐⇒ P (T ) = P ′(T ).

Here, the last equivalence follows from the next lemma. This implies that
Wv(V ) = Wv(V

′). If V ss and (V ′)ss are unramified, then they are determined
by the actions of Frobv, and hence the equality P (T ) = P ′(T ) is equivalent
to V ≃ss V

′.

Lemma 3.3. Let a be a non-zero integer of E and C0 a real number > 0. If
a ≡ 0 (mod λ) (resp. a ≡ 0 (mod ℓOE)) and |ι(a)| ≤ C0 for any embedding

ι : E ↪→ C, then we have ℓ ≤ C
[E:Q]/fλ
0 (resp. ℓ ≤ C0).

Proof. If λ|a (resp. ℓ|a in OE), then by taking the norm N : E× → Q×,
we have ℓfλ ≤ |N(a)| (resp. ℓ[E:Q] ≤ |N(a)|). If |ι(a)| ≤ C0, then by taking

the norm (or product over all ι), we have |N(a)| ≤ C
[E:Q]
0 . The required

inequality follows from these two inequalities.

We need one more lemma:

Lemma 3.4. Let G be a profinite group and T, T ′ be free OEλ
-modules on

which G acts continuously and OEλ
-linearly. Let (T/λT )ss and (T/ℓT )ss be

the semisimplifications of T/λT and T/ℓT as kλ[G]-modules, respectively.
Let e be the ramification index of Eλ/Qℓ. Then we have:

(i) (T/ℓT )ss is isomorphic to the direct-sum of e copies of (T/λT )ss.

(ii) If (T/λT )ss ≃ (T ′/λT ′)ss, then (T/ℓT )ss ≃ (T ′/ℓT ′)ss.
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Proof. Part (ii) follows from Part (i) immediately. To prove (i), consider the
filtration

T/ℓT = T/λeT ⊃ λT/λeT ⊃ · · · ⊃ λeT/λeT = 0.

Then “multiplication by λ” (where λ is identified with a uniformizer at λ)
induces isomorphisms λiT/λi+1T → λi+1T/λi+2T of the graded quotients as
kλ[G]-modules. It then follows that (T/ℓT )ss ≃ ((T/λT )ss)⊕e.

Now we can prove the theorems. We only prove Theorem 1.1 and 1.2, the
proof of Theorem 1.3 being similar. Let C = max{e2b+1, (2

(
n

[n/2]

)
qnbv )[E:Q]/fλ},

as in Theorem 1.1. Choose a finite totally ramified extension K ′
u′/Ku, with

absolute ramification index e2, over which V and V ′ become semistable
(cf. Lem. 2.3). If ℓ > C, then e2b < ℓ − 1. Take K ′ a finite exten-
sion of K and u′|u a place of K ′ such that the completion of K ′ at u′

is K ′
u′ . By assumption, we have HTu′(V ) ⊂ [0, b]. Then by (i) of the

Proposition 2.6, we have TIu′(V ) ⊂ [0, b]. The same holds for V ′, since
we have TIu′(V ) = TIu′(V ′) by the assumption V ≡ss V

′ (mod λ) as Gu-
representations (Note that, by Lemma 3.4, we have also V ≡ss V

′ (mod ℓ)
as Fℓ[Gu]-modules, where V and V ′ are now regarded as Qℓ-linear representa-
tions, so that the definition of TIu and Proposition 2.6 are applicable). Now
we recall that V and V ′ are of type (G). By (ii) of Proposition 2.6, we have
Σ(TIu′(V )) = Σ(HTu′(V )) = Σ(HTu(V )) = (1/2)Σ(Wv(V )), and these are
also equal to Σ(TIu′(V ′)) = Σ(HTu′(V ′)) = Σ(HTu(V

′)) = (1/2)Σ(Wv(V
′)).

Since HTu(V ) ⊂ [0, b], these are bounded by [Eλ : Qℓ]·nb. In particular, total
weights Σ(Wv(V )) and Σ(Wv(V

′)) are ≤ [Eλ : Qℓ] · 2nb. By (i) (resp. (ii))
of Lemma 3.1, the assumption that V ≡ss V

′ (mod λ) as Gv-representations
implies that Wv(V ) = Wv(V

′) (resp. V ≃ss V
′ as Gv-representations) if

ℓ > (2
(

n
[n/2]

)
qnbv )[E:Q]/fλ .

4 Corollaries

Here we give several corollaries of Theorem 1.2, which are motivated by a
conjecture of Rasmussen and Tamagawa ([14]; see also [2], [12], [13] and [15]).
The notations (K, E, n, b, e, v, u, ℓ, λ, C = C([E : Q], n, b, e, qv), ...) are the
same as in the theorem. In this section, V = V r

X will be the Eλ-linear dual
Hr

et(XK̄ , Eλ)
∗ of the r-th λ-adic étale cohomology group, whereX is a smooth

proper variety (variety := separated scheme of finite type over a field) over K
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and XK̄ denotes its base extension to K̄. We set V̄ = V̄ r
X := T/λT , choosing

a GK-stable OEλ
-lattice in V , and let V̄ ss = V̄ r,ss

X be its semisimplification as
a kλ[GK ]-module (V̄ r,ss

X does not depend on the choice of T ). To state the
first corollary, we make the following hypothesis on V̄ ss:

Hypothesis (H). Each simple factor W̄ of V̄ ss lifts to an Eλ-linear represen-
tation W of GK of the form Hs

et(YK̄ , Eλ)
∗ which is semistable at all u | ℓ and

HTu(W ) ⊂ [0, ℓ − 2], where Y is a proper smooth variety over K and s is
some non-negative integer.

Corollary 4.1. For any prime ℓ > C, any odd integer r with 1 ≤ r ≤ b, any
places u of K and λ of E both lying above ℓ, and any smooth proper variety
X which has the r-th Betti number ≤ n, has potentially good reduction at v,
and has semistable reduction at some place u | ℓ, if (H) is true for V̄ r,ss

X , then
none of the simple factors of V̄ r,ss

X are of odd dimension.

Proof. Note first that, if s is odd, then Hs
et(YK̄ , Eλ) has even dimension by

(GAGA and) Hodge theory. Now, let W̄1, ..., W̄k be the simple factors of V̄ ss.
By (H), each W̄i lifts to a geometric Wi with HTu(Wi) ⊂ [0, ℓ− 2]. If one of
the Wi has odd dimension, then it must have even weight, while V has odd
weight r, since X has potentially good reduction at v. Thus the corollary
follows from Theorem 1.2 by putting V ′ := W1 ⊕ · · · ⊕Wk.

As a special case where the Hypothesis (H) holds, we have:

Corollary 4.2. For any prime number ℓ > C, any odd integer r with 1 ≤ r ≤
b, any places u of K and λ of E both lying above ℓ, and any smooth proper
variety X over K which has r-th Betti number ≤ n, has potentially good
reduction at v, and has semistable reduction at u, the Galois representation
on V̄ r,ss

X is not the sum of integral powers mod ℓ cyclotomic characters.

In fact, we can generalize this a bit as follows. Let χ and χ̄ denote
respectively the ℓ-adic and mod ℓ cyclotomic characters of GK .

Corollary 4.3. Assume E contains the e2-th roots of unity. Then for any
prime number ℓ > C such that ℓ ≡ 1 (mod e2), any odd integer r with
1 ≤ r ≤ b, any places u of K and λ of E both lying above ℓ, and any smooth
proper variety X over K which has r-th Betti number ≤ n, has potentially
good reduction at v, and acquires semistable reduction over a finite extension
K ′

u′/Ku with absolute ramification index e(K ′
u′/Qℓ) dividing e, the Galois

representation V̄ r,ss
X is not the sum of characters of GK of the form ε̄iχ̄

bi,

12



where ε̄i : GK → kλ
× are characters unramified at u and of finite order

dividing the order of the group of roots of unity in E, and bi are integers.

Proof. Suppose X has semistable reduction over K ′
u′ with e(K ′

u′/Qℓ) | e. We
may assume e(K ′

u′/Qℓ) = e. Suppose V̄ ss is the sum of the characters ε̄iχ̄
bi

as above. Then the action of the tame inertia group Itame
u′ at u′ on the i-

th factor is via χ̄bi , which equals θebi , where θ is the fundamental character
of Itame

u′ of level 1 ([19], Sect. 1.8, Prop. 8). By (i) of Proposition 2.6, we
have ebi ≡ ci (mod ℓ − 1) with 0 ≤ ci ≤ eb. Since e2 | ℓ − 1, we have
bi = b0i +

ℓ−1
e2
j with 0 ≤ b0i ≤ b and 0 ≤ j < e2. Set κ̄ := χ̄(ℓ−1)/e2

and let κ : GK → Eλ
× be its Teichmüller lift. Since the e2-th power of

κ is trivial, it takes values in E×. Similarly, the Teichmüller lift εi of ε̄i
has also values in E×. Now each character ε̄iχ̄

bi = ε̄iκ̄
jχ̄b0i lifts to the

character εiκ
jχb0i : GK → Eλ

×, or to the 1-dimensional Eλ-linear E-integral
geometric representation Eλ(εiκ

j)⊗Qℓ
Qℓ(b0i), where Eλ(εiκ

j) is the twist of
the trivial representation Eλ by the finite character εiκ

j and Qℓ(b0i) denotes
the b0i-th Tate twist. Let V ′ be the direct-sum of these representations. By
Theorem 1.2, we have Wv(V ) = Wv(V

′), but Wv(V ) = {r, ..., r} (since X
has potentially good reduction at v) while Wv(V

′) = {2b01, ..., 2b0n}, which
is a contradiction if r is odd.

Specializing further, we have:

Corollary 4.4. Let K = Q. Assume E contains the e2-th roots of unity.
Then for any prime number ℓ > C such that ℓ ≡ 1 (mod e2), for any odd
integer r with 1 ≤ r ≤ b, and for any smooth proper variety X over Q
which has r-th Betti number ≤ n, has good reduction outside ℓ and acquires
semistable reduction over a finite extension K ′

u′/Qℓ with absolute ramification
index e(K ′

u′/Qℓ) dividing e, the Galois representation on V̄ is not Borel.

Here, we say that the representation V̄ is Borel if the action of GQ is
given by upper-triangular matrices with respect to a suitable kλ-basis of V̄ .

Proof. Indeed, if it is Borel, its semisimplification is a sum of characters,
which are unramified outside ℓ by assumption. Since the base field is Q, they
are powers of the mod ℓ cyclotomic character. Now the the result follows
from the previous corollary.
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5 Congruences of modular forms

We use the same notations as in the Introduction, except that we always
supposeK = Q and write q for qv in this section. We put φ(N) = #(Z/NZ)×
for any positive integer N and denote by Z̄ the integer ring of Q̄. The goal
of this section is to give a proof of the following congruence result on the
Fourier coefficients of modular forms. For any integers k,N ≥ 1 and a
character ϵ : (Z/NZ)× → C×, let Sk(N, ϵ) denote the C-vector space of cusp
forms of weight k, level N and Nebentypus character ϵ. For a normalized
Hecke eigenform f(z) =

∑∞
n=1 an(f)e

2πinz ∈ Sk(N, ϵ), integers i, j and a
prime number ℓ, consider the following condition on the Fourier coefficients
ap(f) of f :

(Ci,j:ℓ) ap(f) ≡ pi + pj (mod ℓZ̄) for all but finitely many primes p ∤ ℓN.

For fixed k and N , it is well known (cf. e.g. Thm. 10 of [20] and the Intro-
duction of [11]) that there are only finitely many exceptional primes, and
a fortiori finitely many primes ℓ for which (Ci,j:ℓ) hold for some i, j and
f ∈ Sk(N, ϵ). Until recently, however, the situation had not been very clear
when we let k and N vary; as for recent works, see [10] for the case of modu-
lar Abelian varieties and [1] for the case of modular forms on Γ0(N). In this
vein, we show the following by using Theorem 1.3:

Theorem 5.1. Fix a prime number q. For any integer k ≥ 1, any prime ℓ >
4q2(k−1), any integer N such that q ∤ N , ℓ ∤ φ(N) and ℓ2 ∤ N , any character
ϵ : (Z/NZ)× → C×, and any normalized Hecke eigenform f ∈ Sk(N, ϵ), we
have the following:

(i) The condition (Ci,j:ℓ) can hold only if i ≡ j ≡ (k − 1)/2 (mod ℓ− 1).

(ii) The condition (Ci,j:ℓ) holds for no i and j if either k = 1, k is even, or
ℓ ∤ N .

We begin by proving a lemma. For any f as in the theorem, we denote
by E = Qf the field obtained by adjoining all Fourier coefficients of f to
Q, which is a finite extension of Q. We regard ϵ as a character with val-

ues in OE
×. Denote by ϵ̄ (resp. ϵ̄λ) the composite (Z/NZ)× ϵ→ OE

× mod ℓ→
(OE/ℓOE)

× (resp. (Z/NZ)× ϵ→ OE
× mod λ→ (OE/λOE)

×). Let

ρf,λ : GQ → GLEλ
(Vf,λ)
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be the 2-dimensional Eλ-linear representation of GQ associated with f . Thus
if p ∤ ℓN , then Vf,λ is unramified at p and one has

det(T − Frobp|Vf,λ) = T 2 − ap(f)T + ϵ(p)pk−1.

In particular, it is E-integral at p in the sense of Definition 2.2. One has
Wp(Vf,λ) = {(k − 1)/2, (k − 1)/2}. It is crystalline (resp. semistable) at ℓ if
ℓ ∤ N (resp. ℓ2 ∤ N).

Lemma 5.2. Suppose ℓ > 2. Let k ≥ 1 and N ≥ 1 be integers with ℓ ∤ φ(N).
Let ϵ : (Z/NZ)× → C× be a character. Suppose that a normalized Hecke
eigenform f ∈ Sk(N, ϵ) satisfies the condition (Ci,j:ℓ) for some i, j. Then ϵ̄
has values in fact in the canonical image of F×

ℓ in (OE/ℓOE)
×. Moreover,

the following holds:

(i) We have ϵ̄(x (mod N)) = xi+j−(k−1) (mod ℓ) for any x prime to N .

(ii) If ℓ ∤ N , then we have i+ j ≡ k − 1 (mod ℓ− 1) and ϵ̄ = 1.

Proof. By assumption, we have Tr(Frobp|Vf,λ) ≡ pi + pj (mod ℓOE) for all
but finitely many p ∤ ℓN . In particular, we have

(1) ρf,λ ≡ss χi ⊕ χj (mod λ)

as kλ-linear representations of GQ (This holds because ℓ > dim ρf,λ; see e.g.
Lemma 2.10 of [13]), and then we have also ϵ(p)pk−1 ≡ pi+j (mod λ). Hence
we see that

(2) ϵ̄λ(x (mod N)) = xi+j−(k−1) (mod λ)

for any λ|ℓ and any integer x prime to N .
(i) Since the kernel of the projection (OE/ℓOE)

× →
∏

λ|ℓ(OE/λOE)
× has

ℓ-power order, if ℓ ∤ φ(N), then the homomorphism
∏

λ|ℓ ϵ̄λ : (Z/NZ)× →∏
λ|ℓ(OE/λOE)

× lifts uniquely to a homomorphism (Z/NZ)× → (OE/ℓOE)
×,

which is ϵ̄. According to (2), it is given by

(3) ϵ̄(x (mod N)) = xi+j−(k−1) (mod ℓOE)

for any integer x prime to N .
(ii) Suppose ℓ ∤ N . Then (3) must hold for x = ℓ, which is possible only

if i+ j ≡ k − 1 (mod ℓ− 1). In particular, we obtain ϵ̄ = 1.
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Proof of Theorem 5.1. (i) Suppose ℓ ∤ φ(N) and ℓ2 ∤ N . Then ρf,λ is semistable
at ℓ. By assumption, we have Tr(Frobq|Vf,λ) ≡ qi + qj (mod ℓOE). Com-
bining this with Lemma 5.2 (i), we obtain det(T − Frobq|Vf,λ) ≡ det(T −
Frobq|χi ⊕ χj) (mod ℓOE). We also have the congruence (1). Therefore,
if ℓ > 4q2(k−1), it follows from Theorem 1.3 (applied with V ′ = χi′ ⊕ χj′ ,
where i′, j′ are integers in [0, ℓ− 2] such that i′ ≡ i, j′ ≡ j (mod ℓ− 1)) that
ρf,λ ≃ss χ

i ⊕ χj as Eλ-linear representations of the decomposition group Gq

of q. Looking at the Weil weights, we obtain i ≡ j ≡ (k − 1)/2 (mod ℓ− 1).
(ii) If k is even, then the impossibility of (Ci,j:ℓ) follows from Part (i).
If k = 1 and the congruence condition (Ci,j:ℓ) holds, then Part (i) together

with (1) implies that ρ̄f,λ := ρf,λ (mod λ) is unipotent and, in particular,
Im(ρ̄f,λ) is an ℓ-group. On the other hand, if k = 1, then by [6], Im(ρf,λ) is
finite and its image in PGL2(OEλ

) is either dihedral, A4, S4 or A5. Since the
kernel of the reduction map GL2(OEλ

) → GL2(kλ) is pro-ℓ, the representation
ρ̄f,λ cannot be unipotent if ℓ ≥ 3.

Finally, assume ℓ ∤ N . Then ρf,λ is crystalline at ℓ, and thus the Fontaine-
Laffaille theory [8] implies that the tame inertia weights and the Hodge-Tate
weights of ρf,λ coincide with each other. Hence it follows from (1) that
{i, j} ≡ {0, k−1} (mod ℓ−1). Since ℓ > k, we obtain {(k−1)/2, (k−1)/2} =
{0, k − 1}, which is impossible unless k = 1.
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