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Abstract. In this paper, we study a conjecture of Rasmussen and Tamagawa, on the

finiteness of the set of isomorphism classes of abelian varieties with constrained prime

power torsion. Our result is related with abelian varieties which have complex multipli-

cation over their fields of definition.

1. Introduction

Let K be a finite extension of Q, K̄ an algebraic closure of K and GK = Gal(K̄/K)

the absolute Galois group of K. For a prime number ℓ, we denote by K(µℓ) the field

generated over K by the ℓ-th roots of unity. If A is an abelian variety over K, denote

by K(A[ℓ]) the field generated by K and the coordinates of all ℓ-torsion points of A. We

denote by A(K, g, ℓ) the set of K-isomorphism classes of g-dimensional abelian varieties

A over K which satisfy the following conditions.

(RTℓ) K(A[ℓ]) is an ℓ-extension of K(µℓ), that is, [K(A[ℓ]) : K(µℓ)] = ℓa for some

integer a ≥ 0.

(RTred) The abelian variety A has good reduction away from ℓ over K.

It follows from the condition (RTred) and Faltings’ result on the Shafarevich Conjecture

that A(K, g, ℓ) is a finite set. Rasmussen and Tamagawa suggested that such finiteness

should hold if we take the union of these sets for ℓ varying over all primes.

Conjecture 1.1 ([18, Conjecture 1]). The set A(K, g) := {([A], ℓ); [A] ∈ A(K, g, ℓ), ℓ :

prime number} is finite, that is, the set A(K, g, ℓ) is empty for any prime number ℓ large

enough.

This conjecture is proved only in a few cases. For example, Conjecture 1.1 in the case

where K is the rational number field or a certain quadratic field, with g = 1 is proved by

Rasmussen and Tamagawa in [18]. Their proof is based on results on K-rational points

on modular curves in [14] and [15]. Arguments for algebraic points on Shimura curves (cf.

[2], [3]) also give results on Conjecture 1.1 for QM-abelian surfaces over certain quadratic

fields K.
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In this paper, we prove Conjecture 1.1 for abelian varieties inA(K, g, ℓ) which satisfy the

condition that the representations associated with their ℓ-adic Tate modules are abelian;

we are interested in the subset A(K, g, ℓ)ab of A(K, g, ℓ) consisting of K-isomorphism

classes of g-dimensional abelian varieties A over K which satisfy the additional condition:

(RTab) The representation ρA,ℓ : GK → GL(Tℓ(A)) associated with the ℓ-adic Tate

module Tℓ(A) of A has an abelian image.

In fact, we prove a more general result as follows. Denote by A′(K, g, ℓ)ab the set of

K-isomorphism classes of g-dimensional abelian varieties A over K which satisfy (RTab)

and the condition:

(RTℓ)
′ For some finite extension L of K which is unramified at all places of K above ℓ,

L(A[ℓ]) is an ℓ-extension of L(µℓ).

Remark that, differently from elements in A(K, g, ℓ), the reduction hypothesis (RTred) is

not imposed on elements in A′(K, g, ℓ)ab. Our main result in this paper is the following

theorem.

Theorem 1.2. The set A′(K, g, ℓ)ab is empty for any prime number ℓ large enough.

Since A(K, g, ℓ)ab ⊂ A′(K, g, ℓ)ab, we have the following corollary.

Corollary 1.3. The set A(K, g, ℓ)ab is empty for any prime number ℓ large enough.

Keys to the proof of Theorem 1.2 are to construct a compatible system of Galois rep-

resentations which has a strong condition, Faltings’ trick in his proof of the Shafarevich

Conjecture and Raynaud’s criterion of semistable reduction. We hope that this study will

be a first step to solve Conjecture 1.1 for abelian varieties with complex multiplication.

If an abelian variety A over K has complex multiplication over K (in the sense of [20,

Section 4]), then it is well-known that ρA,ℓ is abelian (cf. [loc. cit., Section 4, Corollary

2]). Thus we obtain

Corollary 1.4. The set of K-isomorphism classes of abelian varieties in A(K, g, ℓ)

which have complex multiplication over K is empty for any prime number ℓ large enough.

We want to replace “an abelian image” in the statement of (RTab) with “a potential

abelian image”. If Theorem 1.2 with this replacement is proved, then Conjecture 1.1 holds

for CM abelian varieties, that is, if we denote by A(K, g, ℓ)CM the set of K-isomorphism

classes of abelian varieties in A(K, g, ℓ) which have complex multiplication over K̄, then

the set

A(K, g)CM := {([A], ℓ); [A] ∈ A(K, g, ℓ)CM, ℓ : prime number}
is finite.

The paper proceeds as follows. Section 2 is devoted to a study of compatible systems. In

Section 3, we recall some facts about Conjecture 1.1. Finally we prove our main theorem

in Section 4.
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2. Compatible systems

In this section, we use the notation given in Introduction. It is important for the proof

of Theorem 1.2 to find conditions for the compatible systems to be of a simple form.

2.1. Basic notions. Let E be a finite extension of Q. For a finite place λ of E, we

denote by ℓλ the prime number below λ, Eλ the completion of E at λ and Fλ the residue

field of λ. We denote by Kv the completion of K at a finite place v of K. Let S be

a finite set of finite places of K and T a finite set of finite places of E. Put Sℓ = S ∪
{places of K above ℓ}. A representation ρ : GK → GLn(Eλ) is said to be E-rational (resp.

E-integral) with ramification set S if ρ is unramified outside Sℓλ and the characteristic

polynomial det(XIn − ρ(Frv)) of Frv has coefficients in E (resp. the integer ring of E) for

each finite place v /∈ Sℓλ of K, where Frv is an arithmetic Frobenius of v and In is the

identity matrix of size n.

Now we give definitions of compatible systems of λ-adic (resp. mod λ) representations,

which mainly follow those in [10] and [11].

Definition 2.1. (1) An E-rational (resp. E-integral) strictly compatible system (ρλ)λ
of n-dimensional λ-adic representations of GK with defect set T and ramification set S is

a family of continuous representations ρλ : GK → GLn(Eλ) for finite places λ of E not in

T such that

(i) ρλ is unramified outside Sℓλ ;

(ii) for any finite place v /∈ S of K, there exists a monic polynomial fv(X) ∈ E[X]

(resp. fv(X) ∈ E[X] with coefficients in the integer ring of E) such that for all

finite places λ /∈ T of E coprime to the residue characteristic of v, the characteristic

polynomial det(XIn − ρλ(Frv)) of Frv is equal to fv(X).

(2) An E-rational (resp. E-integral) strictly compatible system (ρ̄λ)λ of n-dimensional mod

λ representations of GK with defect set T and ramification set S is a family of continuous

representations ρ̄λ : GK → GLn(Fλ) for finite places λ of E not in T such that

(i) ρ̄λ is unramified outside Sℓλ ;

(ii) for any finite place v /∈ S of K, there exists a monic polynomial fv(X) ∈ E[X]

(resp. fv(X) ∈ E[X] with coefficients in the integer ring of E) such that for all

finite places λ /∈ T of E coprime to the residue characteristic of v, fv(X) is integral

at λ and the characteristic polynomial det(XIn − ρ̄λ(Frv)) of Frv is equal to the

reduction of fv(X) mod λ.

We will often suppress the sets S and T from the notations.

Example 2.2. Let X be a proper smooth variety over K. Let Vℓ := Hr
ét(XK̄ ,Qℓ)

∨ be

the dual of the ℓ-adic étale cohomology group Hr
ét(XK̄ ,Qℓ) of X. Then the system (Vℓ)ℓ is

a Q-rational strictly compatible system whose defect set is empty and whose ramification
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set is the set of finite places of K where X has bad reduction. This fact follows from the

Weil Conjecture which is proved by Deligne (cf. [5], [6]).

It is conjectured that every E-rational strictly compatible system arises motivically.

Conjecture 2.3 ([10, Conjecture 1]). Any E-rational strictly compatible system of

λ-adic (resp. mod λ) representations arises motivically.

In fact, this conjecture is true if the representations are abelian.

Theorem 2.4 ([11, Theorem 2, Corollary 1]). An E-rational strictly compatible sys-

tem of abelian semisimple λ-adic (resp. mod λ) representations of GK arises from Hecke

characters.

For informations of Hecke characters, see the next subsection.

For a finite place v of K, we denote by Gv the decomposition group at v (where we fix

an embedding K̄ ↪→ K̄v) and by Iv the inertia subgroup of Gv. An inertial level L of K

is a collection (Lv)v of open normal subgroups Lv of Iv for each finite place v of K such

that Lv = Iv for almost all v. We say that a λ-adic representation of GK is geometric (cf.

[8]) if

(i) it is unramified outside a finite set of places of K;

(ii) its restriction to Gv for any finite place v of K is potentially semistable.

The inertial level L of a geometric λ-adic representation ρλ of GK is the collection

(Lv(ρλ))v of open normal subgroups Lv(ρλ) of Iv for each finite place v of K, where Lv(ρλ)

is the largest open subgroup of Iv such that the restriction of ρλ to Lv(ρλ) is semistable.

By the definition of geometric Galois representations, we have Lv(ρλ) = Iv for almost all

v. A compatible system (ρλ)λ of geometric λ-adic representations of GK has bounded in-

ertial level if there exists an inertial level L = (Lv)v such that Lv ⊂ Lv(ρλ) for all λ and v.

Let w1, w2, . . . , wn be integers. A λ-adic representation ρλ is E-rational (resp. E-integral)

with Frobenius weights w1, w2, . . . , wn outside S if ρλ is E-rational (resp. E-integral) with

ramification set S and, for all finite places v /∈ Sℓλ of K, the complex roots of the charac-

teristic polynomial det(XIn − ρλ(Frv)) of Frv, for a chosen embedding of E into the field

of complex numbers C, have complex absolute values q
w1/2
v , q

w2/2
v , . . . , q

wn/2
v , where qv is

the cardinality of the residue field of v. An E-rational strictly compatible system (ρλ)λ
is said to be an E-rational (resp. E-integral) strictly compatible system with Frobenius

weights w1, w2, . . . , wn if each ρλ is E-rational (resp. E-integral) with Frobenius weights

w1, w2, . . . , wn outside the ramification set of (ρλ)λ. We call w1, w2, . . . , wn the Frobenius

weights of ρλ (resp. (ρλ)λ), and ρλ (resp. (ρλ)λ) is said to be pure if w1 = w2 = · · · = wn.

A compatible system (ρλ)λ of geometric λ-adic representations of GK has bounded Hodge-

Tate weights if there exist integers a and b with a ≤ b such that, for any λ and any finite

place v of K above ℓλ, all the Hodge-Tate weights of ρλ|Gv viewed as a Qℓλ-representation

are in [a, b]. Finally, a compatible system (ρ̄λ)λ of mod λ representations of GK is of
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bounded Artin conductor if there exists a non-zero ideal n of OK such that, for any λ, the

Artin conductor outside ℓλ of ρ̄λ divides n.

Proposition 2.5. (1) An E-rational strictly compatible system (ρλ)λ of abelian semisim-

ple λ-adic representations of GK has bounded inertial level and bounded Hodge-Tate

weights.

(2) An E-rational strictly compatible system (ρ̄λ)λ of abelian semisimple mod λ represen-

tations of GK is of bounded Artin conductor.

Proof. By Theorem 2.4, such compatible systems arise from Hecke characters. Hence

the proposition follows from standard properties of a representation arising from Hecke

characters (see Proposition 2.7 below). □

2.2. Compatible systems arising from Hecke characters. In this subsection, we

recall the construction of Galois representations arising from Hecke characters and their

standard properties (cf. [10, Section 4.1], [17, Chapter I], [19, Chapter II] and [22]). We

index as usual the real (resp. complex) places of K by an embedding σ of K into R (resp.

pairs of elements {σ, cσ} where σ is an embedding of K into C with σ(K) ̸⊂ R and c is

complex conjugation). We denote by IK the idele group of K and by (K×
∞)0 ⊂ IK the

connected component of K×
∞ which contains the identity, where K×

∞ is the product of the

unit groups of the completions of K at the infinite places. For any z ∈ C, denote by z̄

the complex conjugation of z.

Definition 2.6. A Hecke character is a continuous homomorphism ψ : IK → C× such

that

(i) ψ(K×) = {1};
(ii) there exist integers nσ, ncσ which satisfy

ψ|(K×
∞)0(x) =

∏
σ real

xnσ
σ

∏
σ complex

xnσ
σ x̄ncσ

σ

with xσ the components of x.

We say that the family of integers (nσ)σ is the infinity type of ψ. The conductor of ψ is

the largest ideal n such that elements of the finite ideles I(∞) of K congruent to 1 mod n

are in the kernel of ψ.

Now we construct Galois representations arising from a Hecke character ψ. We want to

use class field theory: Gab
K ≃ IK/K×(K×

∞)0, where Gab
K is the Galois group of the maximal

abelian extension of K over K and K×(K×
∞)0 is the topological closure of K×(K×

∞)0. Let

ℓ be a prime number. Let ψ0 : IK → C× be the homomorphism defined by

ψ0(x) = ψ(x)
∏
σ real

x−nσ
σ

∏
σ complex

x−nσ
σ x̄−ncσ

σ ,
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then its kernel is open and takes values in a sufficiently large finite extension E (in C)
of Q, and thus we may regard ψ0 as a homomorphism IK → E×. By definition, ψ0

factors through the quotient IK/(K
×
∞)0, however, ψ0 is not trivial on K×. We modify

ψ0 by changing the image of the ℓ-part K×
ℓ := (K ⊗Q Qℓ)

× ≃
∏

v|ℓK
×
v of IK . Suppose

that E contains the Galois closure of K over Q and take any finite place λ of E above

ℓ. Let η : K× → E×
λ be the homomorphism defined by η(x) =

∏
σ σ(x)

nσ , where σ runs

through all embeddings K ↪→ C, and extend η to ηℓ : (K ⊗Q Qℓ)
× → E×

λ . Then we have

the continuous homomorphism ψλ := ψ0 · (ηℓ ◦ αℓ), where αℓ : IK → (K ⊗Q Qℓ)
× is the

projection. Using the isomorphism of class field theory Gab
K ≃ IK/K×(K×

∞)0, we obtain a

continuous character ψλ : GK → E×
λ . Since ψλ is continuous, we know that ψλ has values

in the group of units of Eλ and thus we obtain a mod λ representation ψ̄λ : GK → F×
λ .

Denote by πv a uniformizer of Kv for any finite place v. By construction, we see the

following standard properties for Galois representations arising from Hecke characters.

Proposition 2.7. Let the notation be as above.

(1) The character ψλ is unramified away from ℓn where n is the conductor of ψ. Moreover,

ψλ is locally algebraic in the sense of [19, Chapter III] (See also [17, Chapter I, Section

5]), and hence it is geometric (cf. [8, Section 6, Proposition]).

(2) For any finite place v away from ℓn, we have equalities

ψλ(Frv) = ψλ(πv) = ψ(πv) = ψ0(πv) ∈ E.

In particular, ψλ(Frv) is independent of the choice of λ and has values in E.

(3) The system (ψλ)λ forms an E-rational strictly compatible system of 1-dimensional

λ-adic representations of GK with bounded inertial level and bounded Hodge-Tate weights.

(4) The system (ψ̄λ)λ forms an E-rational strictly compatible system of 1-dimensional

mod λ representations of GK of bounded Artin conductor.

Proof. We only give a very rough sketch: To see locally algebraicity of (1), for ex-

ample, use [17, Proposition (1.5.4)]. Boundednesses of the inertial level and the Artin

conductor in (3) and (4) follow from the existence of the conductor of Hecke characters.

The boundedness of Hodge-Tate weights in (3) can be seen from the infinite type of Hecke

characters, or, for example, we can also check the boundedness by combining locally al-

gebraicity of (1) and the arguments given in the last part (around p. 482) of the proof of

[21, Theorem]. All the other statements follow from direct calculations. □

2.3. Structures of certain compatible systems. Choose an algebraic closure F̄λ of

Fλ. Put χλ : GK

χℓλ−→ Z×
ℓλ
↪→ E×

λ and χ̄λ : GK

χ̄ℓλ−→ F×
ℓλ
↪→ F×

λ , where χℓλ and χ̄ℓλ are

the ℓλ-adic cyclotomic character and the mod ℓλ cyclotomic character, respectively. For

a representation ρ̄λ : GK → GLn(Fλ) with abelian semisimplification, the representation

(ρ̄λ)
ss⊗ F̄λ is conjugate to the direct sum of n characters, where the subscript “ss” means

the semisimplification, and we call these n characters the characters associated with ρ̄λ
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(remark that Schur’s lemma implies that any irreducible abelian F̄λ-representation is of

dimension one). For a λ-adic representation ρλ, we denote by ρ̄λ a residual representation

of ρλ (for a chosen lattice). Note that the isomorphism class of (ρ̄λ)
ss is independent of

the choice of a lattice by the Brauer-Nesbitt theorem.

Theorem 2.8. Let (ρλ)λ be an E-rational strictly compatible system of n-dimensional

geometric semisimple λ-adic representations of GK. Suppose that there exists an infinite

set Λ of finite places of E which satisfies the following conditions.

(1) For any λ ∈ Λ, there exists a place vλ of K above ℓλ such that

(a) ρλ is semistable at vλ;

(b) there exist integers w1 ≤ w2 such that the Hodge-Tate weights of ρλ|Gvλ
are

in [w1, w2] for any pair (λ, vλ).

(2) For any λ ∈ Λ, (ρ̄λ)
ss is abelian and any character associated with ρ̄λ has the form

εχ̄a
λ, where a is an integer and ε : GK → F̄×

λ is a character unramified at all places

of K above ℓλ.

(3) The Artin conductor of (ρ̄λ)
ss is bounded independently of the choice of λ ∈ Λ.

That is, there exists a non-zero ideal n of OK such that, for any λ ∈ Λ, the Artin

conductor outside ℓλ of (ρ̄λ)
ss divides n.

Then there exist integers m1,m2, . . . ,mn and a finite extension L of K such that, for any

λ, the representation ρλ is isomorphic to χm1
λ ⊕ χm2

λ ⊕ · · · ⊕ χmn
λ on GL.

Remark 2.9. If Conjecture 2.3 holds, then we can remove the conditions (1) and (3)

of Theorem 2.8 since these conditions are automatically satisfied.

Lemma 2.10. Let F be a field of characteristic ℓ > 0. Let ρ and ρ′ be n-dimensional

semisimple F-representations of a group G. Assume that ℓ > n. If Tr(ρ(g)) = Tr(ρ′(g))

for any g ∈ G, then ρ is isomorphic to ρ′.

Proof. Let V and V ′ be underlying F-vector spaces of ρ and ρ′, respectively. Let S

be the category of isomorphism classes of simple F[G]-modules. Then there exist a finite

set H of objects of S and integers nh, n
′
h ≥ 0 for each h ∈ H such that

V ≃
⊕
h∈H

W⊕nh
h , V ′ ≃

⊕
h∈H

W
⊕n′

h
h

as F[G]-modules. Here, Wh is a (chosen) representative of h. By a method similar to

the proof of [1, Section 12, n◦ 1, Proposition 3], we obtain (nh − n′
h)dimF(Wh) = 0 in

F. Since ℓ > n, we know that dimF(Wh) ∈ F× and thus nh − n′
h ≡ 0 mod ℓ. Since

−n ≤ nh − n′
h ≤ n, by using the assumption ℓ > n again, we obtain nh = n′

h. □

Proof of Theorem 2.8. By taking a positive integer m large enough and twisting χm
λ to ρλ

for all λ, we may assume w1 ≥ 0. Furthermore, by replacing Λ with its infinite subset,

we may suppose that ℓλ does not divide the discriminant of K and ℓλ > [E : Q] · n for
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any λ ∈ Λ. By the condition (3), there exists a non-zero ideal n of OK such that, for any

λ ∈ Λ, the Artin conductor outside ℓλ of (ρ̄λ)
ss divides n. If we denote by ψ a character

associated with (ρ̄λ)
ss for λ ∈ Λ and decompose ψ = εχ̄a

λ, where ε is as in the condition

(2), then the Artin conductor outside ℓλ of ε also divides n. Hence, replacing the field K

with the strict ray class field of K associated with n, we may replace the condition (2)

with the following condition (2)′:

(2)′ For any λ ∈ Λ, (ρ̄λ)
ss is abelian and any character associated with ρ̄λ has the form

χ̄a
λ.

Now take any λ ∈ Λ. Let χ̄
aλ,1
λ , χ̄

aλ,2
λ , . . . , χ̄

aλ,n
λ be all the characters associated with

ρ̄λ. By Lemma 2.10 together with the condition (2)′ and ℓλ > [E : Q] · n, we see that

the representation (ρ̄λ)
ss is conjugate to the direct sum of n characters (over Fλ) of the

form χ̄a
λ which has values in F×

ℓλ
. Hence if we regard the Fλ-representation ρ̄λ as an Fℓλ-

representation, its semisimplification is of a diagonal form whose diagonal components

are the copies of χ̄
aλ,1
ℓλ

, χ̄
aλ,2
ℓλ

, . . . , χ̄
aλ,n
ℓλ

(here we note that ℓλ > [Fλ : Fℓλ ] ·n). Furthermore,

it is a direct summand of the semisimplification of a residual representation of ρλ viewed

as a Qℓλ-representation. Therefore, by the condition (1) and applying Caruso’s result on

an upper bound for tame inertia weights (cf. [4] or [16, Theorem 2.5 and Remark 2.6]) to

ρ̄λ|Gvλ
(viewed as an Fℓλ-representation), there exists an integer 0 ≤ bλ,i ≤ w2 such that

(♯) bλ,i ≡ aλ,i mod ℓλ − 1

for any i (recall that ℓλ does not divide the discriminant of K). Now we claim that the

set {bλ,1, bλ,2, . . . , bλ,n} is independent of the choice of λ ∈ Λ large enough. Denote by

S the ramification set of (ρλ)λ. Take a v0 /∈ S and decompose det(XIn − ρλ(Frv0)) =∏n
j=1(X − αv0,j). By the conditions (2)′ and (♯), we have the congruence

∏n
j=1(X −

αv0,j) ≡
∏n

j=1(X − q
bλ,j
v0 ) in F̄λ[X]. If ℓλ is large enough (note that Λ is an infinite set),

then we obtain that this congruence is in fact an equality in E[X]:
∏n

j=1(X − αv0,j) =∏n
j=1(X − q

bλ,j
v0 ). Therefore, the set {bλ,1, bλ,2, . . . , bλ,n} is independent of the choice of

λ ∈ Λ with ℓλ large enough. This proves the claim. We denote {bλ,1, bλ,2, . . . , bλ,n}
by {m1,m2, . . . ,mn} for such λ′s. Since (ρλ)λ is a compatible system, we obtain the

equation det(XIn − ρλ(Frv)) =
∏n

j=1(X − q
mj
v ) for any λ and any v /∈ Sℓλ . Therefore, the

representation ρλ is isomorphic to χm1
λ ⊕ χm2

λ ⊕ · · · ⊕ χmn
λ . This finishes the proof. □

Corollary 2.11. Let (ρ̄λ)λ be an E-rational strictly compatible system of abelian

semisimple mod λ representations of GK. Suppose that, for infinitely many finite places

λ of E, any character associated with ρ̄λ has the form εχ̄a
λ, where ε : GK → F̄×

λ is a char-

acter unramified at all places of K above ℓλ. Then there exist a finite extension L of K

and integers m1,m2, . . . ,mn such that, for any λ, the representation ρ̄λ is isomorphic to

χ̄m1
λ ⊕ χ̄m2

λ ⊕ · · · ⊕ χ̄mn
λ on GL.
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Proof. By Theorem 2.4, we know that there exist a finite extension E ′ of E and an

E ′-rational abelian semisimple compatible system (ρλ′)λ′ of λ′-adic representations of GK

which arises from Hecke characters such that (ρλ′)λ′ is a lift of (ρ̄λ)λ, that is, a residual

representation ρ̄λ′ of ρλ′ is isomorphic to ρ̄λ ⊗ Fλ′ for any λ and any finite place λ′ of E ′

above λ. By Proposition 2.7, we see that (ρλ′)λ′ satisfies all the assumptions (1), (2) and

(3) in Theorem 2.8. Consequently we obtain the desired result. □

Corollary 2.12. Let (ρλ)λ be an E-rational strictly compatible system of n-dimensional

semisimple λ-adic representations of GK. Suppose that

(i) (ρ̄λ)
ss is abelian for almost all λ;

(ii) for infinitely many λ, any character associated with (ρ̄λ)
ss has the form εχ̄a

λ, where

ε : GK → F×
λ is a character unramified at all places of K above ℓλ.

Then there exist integers m1,m2, . . . ,mn and a finite extension L of K such that, for any

λ, the representation ρλ is isomorphic to χm1
λ ⊕ χm2

λ ⊕ · · · ⊕ χmn
λ on GL.

Proof. For any finite place v of K not in the ramification set of (ρλ)λ, let fv(X) be

as in Definition 2.1 (1). Applying Corollary 2.11 to the compatible system ((ρ̄λ)
ss)λ, we

see that there exist a finite extension L of K and integers m1,m2, . . . ,mn such that, for

any λ, the representation (ρ̄λ)
ss is isomorphic to χ̄m1

λ ⊕ χ̄m2
λ ⊕ · · · ⊕ χ̄mn

λ on GL. Thus we

have fv(X) =
∏n

j=1(X − q
mj
v ) in Fλ[X] for any λ coprime to v. Taking λ with ℓλ large

enough, we see that fv(X) =
∏n

j=1(X − q
mj
v ) in E[X] and the result follows. □

Let λ and λ′ be finite places of E of different residual characteristics. Let ρλ be an

E-rational n-dimensional semisimple λ-adic representation of GK with ramification set S.

Suppose that there exists a semisimple λ′-adic representation ρλ′ of GK such that

det(XIn − ρλ(Frv)) = det(XIn − ρλ′(Frv))

for any v /∈ Sℓλ ∪Sℓλ′ . In the spirit of Fontaine-Mazur’s “Main Conjecture”, we hope that

ρλ′ is crystalline for any finite place v′ of K above ℓλ′ when the residual characteristic of

λ′ is prime to that of any place in S. However, to prove this hope seems not to be easy. If

we consider representations which are pure, we can improve the statement (1) of Theorem

2.8 as below. (If the hope is true, it is not difficult to prove the proposition below without

the assumption of pureness by a method similar to the proof of Theorem 2.8.)

Proposition 2.13. Let (ρλ)λ be an E-rational strictly compatible system of n-dimensional

geometric semisimple λ-adic representations of GK. Suppose that (ρλ)λ is pure. Suppose

that there exists an infinite set Λ of finite places of K which satisfies the following condi-

tions.

(1) For any λ ∈ Λ, there exists a place vλ of K above ℓλ such that

(a) there exists a constant C > 0 such that [Ivλ : Lvλ(ρλ)] < C for any pair

(λ, vλ). Here Lvλ(ρλ) is the inertial level of ρλ at vλ;
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(b) there exist integers w1 ≤ w2 such that the Hodge-Tate weights of ρλ|Gvλ
are

in [w1, w2] for any pair (λ, vλ).

(2) For any λ ∈ Λ, (ρ̄λ)
ss is abelian and any character associated with ρ̄λ has the form

εχ̄a
λ, where ε : GK → F̄×

λ is a character unramified at all places of K above ℓλ.

(3) The Artin conductor of (ρ̄λ)
ss is bounded independently of the choice of λ ∈ Λ in

the sense of (3) of Theorem 2.8.

Then there exist an integer m and a finite extension L of K such that, for any λ, the

representation ρλ is isomorphic to (χm
λ )

⊕n on GL.

Proof. Most parts of the first paragraph of this proof will proceed by a method similar

to the proof of Theorem 2.8 and hence we will often omit precise arguments. First we

may assume that, for any λ ∈ Λ,

(2)′ any character associated with ρ̄λ has the form χ̄a
λ,

and furthermore, there exists a positive integer r such that ρλ|Gvλ
has Hodge-Tate weights

in [0, r] for any pair (λ, vλ) as in the condition (1). Suppose λ is a finite place in Λ. Let

χ̄
aλ,1
λ , χ̄

aλ,2
λ , . . . , χ̄

aλ,n
λ be all the characters associated with ρ̄λ. Taking a finite place vλ

as in the condition (1), there exists a finite extension Lw(λ) of Kvλ such that ρλ|GLw(λ)

is semistable and [Lw(λ) : Kvλ ] ≤ C. If we denote by ew(λ) the absolute ramification

index of Lw(λ), then we have ew(λ) ≤ C[K : Q], and Caruso’s result on an upper bound

for tame inertia weights of ρ̄λ|GLw(λ)
(viewed as an Fℓλ-representation) implies that there

exists an integer 0 ≤ b′λ,i ≤ ew(λ)r which satisfies b′λ,i ≡ ew(λ)aλ,i mod ℓλ − 1. Putting

e = lcmλ∈Λ(ew(λ)) and bλ,i = b′λ,ie/ew(λ), we have e ≤ (C[K : Q])!, bλ,i ∈ [0, er] and

bλ,i ≡ eaλ,i mod ℓλ−1. Note that e is independent of the choice of λ ∈ Λ. Take any v /∈ Sℓλ

and decompose det(XIn − ρλ(Frv)) =
∏n

j=1(X − αv,j). Then, by an argument similar to

that in the proof of Theorem 2.8, we can show that
∏n

j=1(X−αe
v,j) =

∏n
j=1(X−qbλ,jv ) if we

take λ ∈ Λ with ℓλ large enough. Since (ρλ)λ is pure, we know that bλ,1 = · · · = bλ,n and

furthermore they are independent of the choice of λ ∈ Λ. Putting b := bλ,1 = · · · = bλ,n,

we have
n∏

j=1

(X − αe
v,j) =

n∏
j=1

(X − qbv). (∗)

Fix λ ∈ Λ and denote it by λ0. By taking a finite extension K ′ of K large enough, we

can define a continuous character χ
1/e
λ0

: GK′ → E×
λ0

which has values in the integer ring

of Eλ0 and (χ
1/e
λ0

)e = χλ0 . In fact, this can be checked as follows: Let mλ0 be the maximal

ideal of the integer ring of Eλ0 . Let eλ0 be the absolute ramification index of Eλ0 . Fix an

integer k which satisfies k > eλ0/(ℓλ0 − 1), and take a finite extension K ′ of K such that

χλ0(GK′) ⊂ 1 + emk
λ0
. Then we obtain the desired character χ

1/e
λ0

by the composite

GK′
χλ0→ 1 + emk

λ0

log→ emk
λ0

1/e→ mk
λ0

exp→ 1 +mk
λ0

⊂ E×
λ0
.
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In the argument below, we use the method of the proof of [12, Proposition 1.2]. Let λ0
and K ′ be as above and replace K with this K ′. The equation (∗) implies that, for any v /∈
Sℓλ0

, all the roots of det(XIn−ρ′λ0
(Frv)) are e-th roots of unity, where ρ′λ0

is the twist of ρλ0

by (χ
1/e
λ0

)−b. In particular, there are only finitely many possibilities for the characteristic

polynomial of Frv. Now the function which takes g ∈ GK to det(XIn − ρ′λ0
(g)) ∈ Eλ0 [X]

is continuous (here, we equip Eλ0 [X] ≃
⊕

i≥0Eλ0X
i with the direct product topology

of the λ0-adic topology on Eλ0X
i), and takes only finitely many values by Chebotarev’s

density theorem. It follows that the set {g ∈ GK ; det(XIn − ρ′λ0
(g)) = (X − 1)n} is an

open subset of GK , which contains the identity map of K̄. Hence there exists a finite

extension L of K such that GL ⊂ {g ∈ GK ; det(XIn − ρ′λ0
(g)) = (X − 1)n}. Then we see

that ρλ0 is isomorphic to ((χ
1/e
λ0

)b)⊕n on GL. Since ρλ0 is geometric, ρλ0 is Hodge-Tate at

any place of L above ℓλ0 and thus we know that b/e =: m is an integer. This finishes the

proof. □

3. Rasmussen-Tamagawa Conjecture

We continue to use the same notation as in the previous section. Let g ≥ 0 be an

integer. For any abelian variety A over K, denote by A[ℓ] the group of K̄-valued ℓ-torsion

points of A and by K(A[ℓ]) the field generated by K and the coordinates of A[ℓ].

Definition 3.1. We denote by A(K, g, ℓ) the set of K-isomorphism classes of g-

dimensional abelian varieties A over K which satisfy the following conditions.

(RTℓ) K(A[ℓ]) is an ℓ-extension of K(µℓ).

(RTred) The abelian variety A has good reduction away from ℓ over K.

By (RTred), the set A(K, g, ℓ) is a finite set (cf. [7, Theorem 5] and [23, 1. Theorem]).

Rasmussen and Tamagawa conjectured in [18] that for any ℓ large enough, this set is in

fact empty (see Conjecture 1.1 in Introduction). The following results on the Rasmussen-

Tamagawa Conjecture are known:

(i) ([18, Theorem 2]) If K = Q and g = 1, then the conjecture holds.

(ii) ([18, Theorem 4]) If K is a quadratic number field other than the imaginary quadratic

fields of class number one and g = 1, then the conjecture holds.

(iii) ([16, Corollary 4.5]) Let A(K, g, ℓ)st be the set of K-isomorphism classes of abelian

varieties in A(K, g, ℓ) with semistable reduction everywhere. Then there exists an integer

C = C([K : Q], g), depending only on [K : Q] and g, such that A(K, g, ℓ)st is empty for

any ℓ > C with ℓ ∤ dK . Here dK is the discriminant of K.

(iv) ([2, Corollary 6.4] and [3]) LetK be a quadratic number field other than the imaginary

quadratic fields of class number one. Let A(K, 2, ℓ)QM be the set ofK-isomorphism classes

of QM-abelian surfaces by some quaternion division algebra over Q in A(K, 2, ℓ). Then

A(K, 2, ℓ)QM is empty for any ℓ large enough.
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For a g-dimensional abelian variety A over K, denote by ρA,ℓ : GK → GL(Tℓ(A)) ≃
GL2g(Zp) the representation determined by the action of GK on the ℓ-adic Tate module

Tℓ(A) of A. Consider the following conditions.

(RTℓ)
′ For some finite extension L of K which is unramified at all places of K above ℓ,

L(A[ℓ]) is an ℓ-extension of L(µℓ).

(RTab) The representation ρA,ℓ has an abelian image.

It is clear that (RTℓ) implies (RTℓ)
′. We recall the definitions ofA(K, g, ℓ)ab andA′(K, g, ℓ)ab.

Definition 3.2. We define the sets A(K, g, ℓ)ab and A′(K, g, ℓ)ab of isomorphism

classes of g-dimensional abelian varieties A over K as follows:

(1) [A] ∈ A(K, g, ℓ)ab if and only if A satisfies (RTℓ), (RTred) and (RTab).

(2) [A] ∈ A′(K, g, ℓ)ab if and only if A satisfies (RTℓ)
′ and (RTab).

Clearly, we have A(K, g, ℓ) ⊃ A(K, g, ℓ)ab ⊂ A′(K, g, ℓ)ab. Note that the reduction hy-

pothesis (RTred) is not imposed on abelian varieties in A′(K, g, ℓ)ab. Hence A′(K, g, ℓ)ab
may be infinite (but the author does not know an example such that A′(K, g, ℓ)ab is

infinite).

4. Proof of Theorem 1.2

In this section, we use the same notation as in previous sections. First we study the

structure of A[ℓ] for an abelian variety A in A′(K, g, ℓ)ab. Let A be any g-dimensional

abelian variety over K. We denote by ρ̄A,ℓ : GK → GL(A[ℓ]) ≃ GL2g(Fp) the representa-

tion determined by the action of GK on A[ℓ]. Consider the following conditions.

(RTmod) (ρ̄A,ℓ)
ss is conjugate to the direct sum of 2g characters which are of the form

χ̄a
ℓ .

(RTmod)
′ (ρ̄A,ℓ)

ss is abelian and the characters associated with ρ̄A,ℓ are of the form εχ̄a
ℓ ,

where ε : GK → F̄×
ℓ is a continuous character which is unramified at all places above ℓ.

The condition (RTℓ) is equivalent to the condition (RTmod) by the lemma below. Hence

the K-isomorphism class [A] of g-dimensional abelian variety A over K is in A(K, g, ℓ) if

and only if A satisfies (RTmod) and (RTred).

Lemma 4.1. Let A be a g-dimensional abelian variety over K.

(1) The abelian variety A satisfies (RTℓ) if and only if A satisfies (RTmod).

(2) Suppose that (ρ̄A,ℓ)
ss is abelian. Then A satisfies (RTℓ)

′ if and only if A satisfies

(RTmod)
′.

Proof. The assertion (1) is proved by the arguments of the proof of [18, Lemma 3]

and thus we omit the proof. Suppose that (ρ̄A,ℓ)
ss is abelian and denote by ψ1, . . . , ψ2g the

characters associated with ρ̄A,ℓ. If A satisfies (RTmod)
′, then we have ψi = εiχ̄

ai
ℓ for some

integer ai where εi : GK → F̄×
ℓ is a continuous character which is unramified at all places of
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K above ℓ. Let L be the composition field of all fields K̄ker εi for all i. Then L is unramified

at all places of K above ℓ. Since each ψi|GL(µℓ)
is trivial, we obtain (RTℓ)

′. Conversely,

suppose that (RTℓ)
′ holds and take a field L as in the statement of (RTℓ)

′. By (1), we

know that each ψi|GL
is equal to χ̄ai

ℓ for some integer ai. Hence εi := ψi · χ̄−ai
ℓ : GK → F̄×

ℓ

is unramified at all places above ℓ and this implies (RTmod)
′. □

We recall the following two propositions.

Proposition 4.2 (Faltings). Fix an integer w. The set of isomorphism classes of

semisimple n-dimensional ℓ-adic representations GK → GLn(Qℓ) which are Q-integral

with Frobenius weights less than or equal to w outside S, is finite.

Proof. The Proposition follows from the proof of [7, Theorem 5]. See also [13, Chapter

VIII, Section 5, Theorem 11]. □

Proposition 4.3 (Raynaud’s criterion of semistable reduction, [9, Proposition 4.7]).

Suppose A is an abelian variety over a field F with a discrete valuation v, n is a positive

integer not divisible by the residue characteristic, and the points of A[n] are defined over

an extension of F which is unramified over v. If n ≥ 3 then A has semistable reduction

at v.

Here is one consequence of Proposition 4.3: Let A be an arbitrary abelian variety over

a number field K. For any positive integer n, denote by K(A[n]) the field generated

by K and the coordinates of all n-torsion points of A. Then A has semistable reduc-

tion everywhere over K(A[12]) = K(A[3])K(A[4]). In fact, the abelian variety A has

semistable reduction over K(A[3]) outside 3 (apply Proposition 4.3 for F = K(A[3])) and

has semistable reduction over K(A[4]) outside 2 (apply Proposition 4.3 for F = K(A[4])).

For later use, we put K(A[ℓ∞]) =
∪

n≥0K(A[ℓn]) for any prime number ℓ.

For an integer g > 0, put

Dg := ♯GL2g(Z/3Z) · ♯GL2g(Z/4Z).

If ρ : GK → GL2g(Qℓ) is an abelian representation, then, for any integer k, we denote

by ρk the representation GK → GL2g(Qℓ) which is defined by ρk(s) := (ρ(s))k for any

s ∈ GK . With this notation, we obtain the following lemma which plays an important

role in the proof of Theorem 1.2 to construct a good compatible system.

Lemma 4.4. Let g > 0 be an integer and ℓ0 a prime number. Let Aℓ0 be the set

of isomorphism classes of representations ρ : GK → GL2g(Qℓ0) which are isomorphic to

ρ
Dg

A,ℓ0
for some g-dimensional abelian variety A over K such that K(A[ℓ∞0 ]) is an abelian

extension of K. Then Aℓ0 is finite.

Proof. If A is an abelian variety over K such that K(A[ℓ∞0 ]) is an abelian extension

of K, then A has potential good reduction everywhere (cf. [20, Section 2, Corollary 1]).
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Putting L := K(A[12]), such an abelian variety A has good reduction everywhere over

L by Proposition 4.3. Since [L : K] divides Dg, the representation ρ
Dg

A,ℓ0
is unramified

outside ℓ0 for any g-dimensional abelian variety A over K such that K(A[ℓ∞0 ]) is an

abelian extension of K. Take any finite place v of K not above ℓ0. Let vL be a finite place

of L above v and denote by f the extension degree of FvL over Fv, where FvL and Fv are

residue fields of vL and v, respectively. Remark that Dg/f is an integer since L is a Galois

extension of K, and ρA,ℓ0(FrvL) is well-defined since A has good reduction everywhere over

L (cf. [20, Theorem 1]). It is not difficult to obtain the equation

det(XI2g − ρ
Dg

A,ℓ0
(Frv)) = det(XI2g − (ρA,ℓ0(FrvL))

Dg/f ).

Since A has good reduction everywhere over L, the polynomial det(XI2g−ρA,ℓ0(FrvL)) has

rational integer coefficients and hence so is det(XI2g − (ρA,ℓ0(FrvL))
Dg/f ). Consequently,

the representation ρ
Dg

A,ℓ0
is Q-integral with Frobenius weight Dg/2 outside the set of finite

places of K above ℓ0. Therefore, by Proposition 4.2, it is enough to prove that the

representation ρ
Dg

A,ℓ0
is semisimple. Note that it has been already known that ρA,ℓ0 is

semisimple (cf. [7, Theorem 3]). Since ρA,ℓ0 is abelian and geometric, the representation

ρA,ℓ0 is locally algebraic in the sense of [19] (see also [8, Section 6, Proposition]). Therefore,

by [17, (MT 1)], there exists a modulus of definition m and an algebraic homomorphism

ϕ : Sm → GL2g over Q such that the ℓ0-adic representation induced by ϕ is isomorphic

to ρA,ℓ0 . Here, the definition of the commutative algebraic group Sm over Q is given in

[19, Chapter II]. Note that any ℓ0-adic representation arising from an algebraic morphism

Sm → GL2g is automatically semisimple. Since ρ
Dg

A,ℓ0
comes from the composition Sm

Dg→
Sm

ϕ→ GL2g where Sm
Dg→ Sm is the multiplication by Dg map, we obtain the fact that

ρ
Dg

A,ℓ0
is semisimple. □

Proof of Theorem 1.2. First we note that, if an abelian variety A over K satisfies (RTab),

then ρA,ℓ′ is abelian for any prime number ℓ′ (cf. [19, Chapter III, Section 2.3, Corollary

1]). Fix a prime number ℓ0 and denote by Aℓ0 the set as in Lemma 4.4. Assume that

there exist infinitely many prime numbers ℓ such that A′(K, g, ℓ)ab is not empty. For every

such ℓ, we obtain the ℓ0-adic representation ρ
Dg

A,ℓ0
which is in the set Aℓ0 , where A is an

abelian variety whose isomorphism class is in the set A′(K, g, ℓ)ab. By Lemma 4.4, we see

that there exists a representation ρℓ0 in Aℓ0 satisfying the following: For infinitely many

ℓ, there exists an element [A] ∈ A′(K, g, ℓ)ab such that the representation ρ
Dg

A,ℓ0
is isomor-

phic to ρℓ0 . Thus we know that the representation ρℓ0 extends to a Q-integral strictly

compatible system (ρℓ)ℓ of 2g-dimensional abelian semisimple ℓ-adic representations of

GK . Furthermore, for infinitely many prime numbers ℓ, the characters associated with a

residual representation ρ̄ℓ of ρℓ are of the form εχ̄a
ℓ by Lemma 4.1, where ε : GK → F̄×

ℓ is

a continuous character which is unramified at all places of K above ℓ. Applying Corollary

2.12, we see that there exist integers m1, . . . ,m2g and a finite extension L of K such that
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ρℓ0 is isomorphic to χm1
ℓ0

⊕χm2
ℓ0

⊕· · ·⊕χm2g

ℓ0
on GL. In particular, for some prime number ℓ

and some [A] ∈ A′(K, g, ℓ)ab, ρ
Dg

A,ℓ0
is isomorphic to χm1

ℓ0
⊕χm2

ℓ0
⊕· · ·⊕χ

m2g

ℓ0
on GL. There-

fore, looking at the eigenvalues of the images of a Frobenius element (at some place) of

ρ
Dg

A,ℓ0
|GL

and χm1
ℓ0

⊕ χm2
ℓ0

⊕ · · · ⊕ χ
m2g

ℓ0
, we know that Dg/2 = m1 = m2 = · · · = m2g. Since

ρ
Dg

A,ℓ0
|GL

has Hodge-Tate weights 0 and Dg at a place of L above ℓ0 (cf. [19, III-7]), this is

a contradiction. □
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