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Abstract

Cais and Liu extended the theory of Kisin modules and crystalline representations to allow
more general coefficient fields and lifts of Frobenius. Based on their theory, we classify lattices
in crystalline representations by Kisin modules with additional structures under a Cais-Liu’s
setting. Furthermore, we give a geometric interpretation of Kisin modules of height one in
terms of Dieudonné crystals of p-divisible groups, and show a full faithfulness theorem for a
restriction functor on torsion crystalline representations.
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1 Introduction

Let K be a complete discrete valuation field of mixed characteristics (0,p) with perfect residue
field k. Let K be an algebraic closure of K and G := Gal(K/K) the absolute Galois group of
K. Let e be the absolute ramification index of K and r > 0 an integer. It is known that to
classify G-stable lattices in semi-stable or crystalline representations by some linear data is one of
the powerful tools for studies of various interesting problems such as Langlands correspondence.
For this, the theory of Kisin modules, provided in [Kis], is very useful. Based on Kisin’s theory,
Liu [Li2] constructed a theory of (¢, G’)-modules, which gives a categorical equivalence between
them and a category of G-stable lattices in semi-stable representations with certain Hodge-Tate
weights. One of the advantages of Liu’s theory is that there are no restriction on e and 7 in his
theory. Throughout Kisin and Liu’s theory, the non-Galois “Kummer” extension K, /K, obtained
by adjoining a given compatible system of p-power roots of a uniformizer of K, plays a central
role. Recently, Cais and Liu [CL] generalized Kisin’s theory to the setting of many f-iterate
extension K /K. Here, the f-iterate extension K,/K that we consider is defined as follows. Let
fu) =uP 4+ ap_1uP™ + -+ aju € Zy[u] such that f(u) = uP mod pZ,[u]. We fix the choice of a
uniformizer 7o = 7 of K and {m,}n>0 such that f(m,11) = m,. Then we set Ky :=J,,~o K(mp).
Thus Kisin’s theory is the case where f(u) = u?.

The aim of this paper is to establish the theory of “crystalline” (¢, G’)—modules under the Cais-
Liu’s setting, and apply it to a study of torsion crystalline representations. In Section 3.2, follwing
[Li2], we define a notion of (¢, G)-modules of height 7. We show in Theorem 3.7 that, under
some mild assumptions, there exists an anti-equivalence between the category of (¢, é)—modules
of height r (with an additional condition) and the category of G-stable lattices in crystalline Q-
representations with Hodge-Tate weights in [0, r].

As a consequence of our arguments, we can prove a full faithfulness theorem on torsion crys-
talline representations. Let Repi.. ~(G) be the category of torsion crystalline representations of G
with Hodge-Tate weights in [0,7]. Here, a torsion Z,-representation T is torsion crystalline with
Hodge-Tate weights in [0,r] if T is a quotient of lattices in a crystalline Q,-representation with
Hodge-Tate weights in [0, r]. It is well-known that the condition that T is torsion crystalline with
Hodge-Tate weights in [0, 1] is equivalent to the condition that T is flat in the sense that T is of
the form H(K) where H is a finite flat group scheme over Oz killed by some power of p. The
theorem below is a torsion analogue of Theorem 1.0.2 of [CL)].

Theorem 1.1 (= Theorems 4.1 and 4.2). Under some technical assumptions (see Theorems 4.1 and
4.2 for details), the restriction functor Repq. ~ (G) — Repyo, (Gr) is fully faithful if e(r—1) < p—1.
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In the case f(u) = P, this is Theorem 1.2 of [Oz2]. In this case, previous results have been given
by some mathematicians. The theorem was first studied by Breuil for e = 1 and 7 < p — 1 via
the Fontaine-Laffaille theory ([Brl], the proof of Théorém 5.2). He also proved the theorem for
p > 2 and r < 1 as a consequence of a study of the category of finite flat group schemes ([Br2,
Theorem 3.4.3]). Later, his result was extended to the case p = 2 in [Kim]|, [La], [Li3] (proved
independently). Based on studies of ramification bounds for torsion crystalline representations,
Abrashkin proved the theorem in the case [K : Q)] < 00, e =1, p > 2 and r < p ([Ab, Section
8.3.3]).

On the other hand, our arguments give an affirmative answer to a conjecture suggested in [CL,
Remark 5.2.3 and Section 6.3] (in the case where “F = Q,”). Let T be a G-stable lattice in
a crystalline Q,-representation with Hodge-Tate weights in [0,7]. Cais-Liu constructed a Kisin
module 9t which corresponds to T'|¢,, where G is the absolute Galois group of K. This Kisin

module 9 depends on the choice of (f(u), (7n)n>0). If we select another choice of (f'(u), (7),)n>0),
then we obtain a different Kisin module 9. It seems natural to ask for the relationship between
9 and M. For this, we show!

1We should note that the anonymous referee pointed out that Theorem 1.2 holds if we replace the assumptions
“vp(a1) > max{r,1} and (P)” with only one assumption “v,(a1) > 1" (see Section 3.7).



Theorem 1.2 (= Corollary 3.22 and Theorem 3.24). Let the notation be as above. Assume
vp(ar) > max{r,1}. Furthermore, we assume the condition (P) (cf. Section 3.2) if r > 1. Then
the Kisin modules M and M’ become isomorphic after base change to W(R).

Now we consider the case r = 1. In this case, Cais-Liu showed in [CL, Theorem 5.0.10] that there
exists an anti-equivalence of categories between the category of Kisin modules of height 1 and the
category of p-divisible groups over the ring of integers Ok of K. On the other hand, in the classical
Kisin’s setting f(u) = uP, relationships between Kisin modules of height 1 and Dieudonné crystals
are well-studied (cf. [Kis]). Combining these facts with the above theorem, we obtain a geometric
interpretation of Kisin modules of height 1 for the Cais-Liu’s setting.

Corollary 1.3 (= Corollary 3.26). Assume v,(a1) > 1. Let H be a p-divisible group over O and
D(H) be the Dieudonné crystal attached to H. Let 9 be the Kisin module attached to H. Then
there is a functorial isomorphism Acis @ @M ~ D(H)(Acris)-

Acknowledgments. The author would like to thank the anonymous referee who gave him many
valuable advice. In particular, the arguments in Section 3.7 are completely given by the referee.

Notation : For any topological group H, a free Z,-representation of H (resp. a Q,-representation
of H) is a finitely generated free Z,-module equipped with a continuous Z,-linear H-action (resp.
a finite dimensional Q,-vector space equipped with a continuous Q,-linear H-action). We denote
by Rep, (H) (resp. Repg (H)) the category of them.

For any ring extension A C B and any A-linear morphism of A-modules f: M — N, we often
abuse notations by writing f: B®4 M — B ®4 N for the B-linear extension of f.

2 Preliminary

In this section, we define some basic notation, and we recall some results on iterate extensions
given in [CL]. A lot of arguments in this section are deeply depending on [Lil, Sections 2 and 3].
It will be helpful for the reader to refer this reference.

2.1 Basic notation

Let p > 2 be a prime number. Let K be a complete discrete valuation field of mixed characteristics
(0,p) with perfect residue field k. We denote by e the absolute ramification index of K. Let K
be an algebraic closure of K and Oz the integer ring of K. We denote by v, the valuation of K
normalized by v,(p) = 1. We set G := Gal(K/K), the absolute Galois group of K. We denote by
Ky the field W (k)[1/p], which is the maximal absolutely unramified subfield of K.

We fix a uniformizer 7 of K and fix the choice of a system (7, ),>0, where mp = 7w and f(mp41) =
7, for any n > 0. We also fix a polynomial f(u) = Y7 au’ = uP +ap,_1uP~ ' + -+ aju € Z,[u]
which satisfies f(u) = u? mod p. By an easy computation of the Newton polygon of f(u) — mp—1,
we see that v, (m,) = 1/(ep™) for any n > 0. We denote by E(u) the minimal polynomial of 7 over
Ko.

Let R = @O?/p, where the transition maps are given by the p-th power map. This is
a complete valuation ring with residue field k. Let vg be a valuation of R given by vg(z) :=
limy, 00 vp(ﬁcﬁn) for x = (n)n>0 € R, where &, € O is any lift of x,,. Let mg be the maximal
ideal of R and set m%° := {z € R | vg(z) > ¢} for any real number ¢ > 0. We set & :=
(mn, mod pOg)n>0 € R. Note that vg(zw) = 1/e. By [CL, Lemma 2.2.1], there exists a unique set-
theoretic section {-};: R — W(R) to the reduction modulo p which satisfies ({z};) = f({z}/)
for all z € R. The embedding W (k)[u] — W (R), given by u + {z}, extends to a unique W (k)-
algebra embedding & := W (k)[u] — W(R). By this embedding, we identify & with a ¢-stable
W (k)-subalgebra of W(R). Let Og be the p-adic completion of G[1/u]. This is a complete discrete
valuation ring with residue field k((v)). Note that p is a uniformizer of Og. Let £ be the fraction
field of Og. Then the embedding & — W (R) extends to Og — W(FrR) and £ — W (FrR)[1/p].



We denote by &Y the p-adic completion of the maximal unramified algebraic extension of &,
and denote by O" the integer ring of £**. We may regard £ and O" as @-stable subrings of
W (FrR)[1/p] and W (FrR), respectively. We put &"* = O" N W (R).

We set Ky :=J,,~q K (7,) and denote by G the absolute Galois group of K. The extension
K, /K is totally wildly ramified. Furthermore, it is shown in [CL, Lemmas 3.1.1 and 3.2.1] that
the extension K,/K is strictly APF in the sense of [Wi|, and the Gr-action on R induces an
isomorphism G ~ G () = Gr(u)- Note that Gr-action on W (FrR)[1/p] preserves €' and O,
and G acts on £ and Og¢ trivial.

Let v: W(R) — W (k) be the canonical projection induced by the projection R — k, which
extends to a map v: BT, — W(k)[1/p]. Here, BL._ is the usual p-adic period ring of Fontaine (see
[Fo2] for various p-adic period rings). For any subring A of B, , we set Fil'A := AN FiliBCtis. We
also set

ILA:=Ankerv and
IWA = {z e A| ¢"(z) € Fil' A for any n > 0}.

Note that we have I, A D I A.

2.2 Etale p-modules and Kisin modules

Let Modo, (resp. Modo, ) be the category of finite free p-modules M over Og (resp. of finite
type p-modules M over Og¢ killed by a power of p) whose Og-linearization 1@ ¢: O @y 0, M — M
is an isomorphism. We call objects of these categories étale p-modules.

We define a Z,-representation of G for any étale p-module M by

To, (M) = Homo, (M, O) if M € Modo,,
Oe | Homo, ,(M,Q,/Z, ®z, O%) if M € Modo, ..

Here, the Gr-action on Tp, (M) is given by (g.f)(z) := g(f(x)) for f € To, (M), g € G and
z € M. Then we have a contravariant functor To, : Modo, — Repy, (Gr) and To, : Modo, ., —

tor

Repz, (Gr). By [CL, Corollary 3.2.3], these two functors give equivalences of categories Modp, ~
Repy, (Gr) and Modo, ., ~ Reptz‘;r(Gl).

For any integer r > 0, we denote by 'Modg the category of finite type p-modules 9t over &
which are of height r in the sense that the cokernel of the &-linearization 1 ® pox: 6 @, e M — M
of gy is killed by E(u)". A ¢-modules 9 is p’-torsion free if, for any non-zero element z € M,
Anng(z) is 0 or p"& for some n. If M is killed by some power of p, then we can check that 9
is p/-torsion free if and only if 9 is u-torsion free. We denote by Modg the full subcategory of
"Modg consisting of those objects which are finite and free over &. We also denote by Modg__ the
full subcategory of "Modg consisting of those objects which are p’-torsion and killed by a power of
p. We call objects of Modg or Modg__ free Kisin modules or torsion Kisin modules, respectively.
If 9 is a Kisin module, then one can check that O¢ ®g M is an étale p-module.

We describe standard linear algebraic properties of Kisin modules.

Proposition 2.1. Let 0 — M — MM — M"” — 0 be an exact sequence of p-modules over &. If
M M and M” are of finite type and p'-torsion free and M is of height r, then M and M are of
height r.

Proof. See Propositions B. 1.3.3 and B. 1.3.5 of [Fol]. O
Proposition 2.2. Let 9 € "Modg be killed by a power of p. Then the following are equivalent.
(1) M € Modg__,

(2) the natural map M — O @ M is injective,



(3) there exists an increasing sequence
O=MCCM CMy C---CM, =M

of w-modules over & such that, for each i, M; /IM;_1 is finite free over k[u] and D;/M;_; €
"Modg -

(4) M is a quotient of two finite free S-modules N and N with W, 9" € Modg.
Moreover, if this is the case, M; and M;/9M;_1 are objects of Modg__ for each i.
Proof. The same proof as [Lil, Proposition 2.3.2] proceeds. O

Corollary 2.3. Let A be a p-torsion free S-algebra and M a Kisin module. Then we have
Tor{ (M, A) = 0. In particular, the functor from the category of Kisin modules to the category
of A-modules defined by M — A Qg M is ezact.

Proof. By Proposition 2.2 and dévissage argument, we can reduce a proof to the case where 907 is
killed by a power of p. In this case, MM is a free k[u]-module of finite rank. Thus it suffices to show
Tor{ (k[u], A) = 0. This equality in fact follows from the assumption that A is p-torsion free. [

By this proposition, the following corollaries immediately follow:

Corollary 2.4. Let MM be a Kisin module. Let A C B be a ring extension of p-torsion free &-
algebras such that the natural map A/pA — B/pB is injective. Then the natural map A @g MM —
B ®g M is injective.

Corollary 2.5. Let 9 be a Kisin module and I a p-module over & with M CN. Let & C A C
W(FrR) be ring extensions. Suppose that such that the natural map A/pA — FrR is injective.
(1) The natural map A ®s M — A ®@s N is injective.

(2) If A is p-stable, then the natural map A @, e M — AQ,.e N is injective.

We define a Z,-representation of G for any Kisin module 97 by

T () := Homg, , (M, &™) if M € Mod,
ST Home (M, Qp/Z, @7, &) if M € Mod_.

Here, the Gr-action on T (M) is given by (g.f)(z) := g(f(x)) for f € Ts(M), g € G and x € M.
If 9 is a Kisin module, then M := O¢ ®g M is an étale p-module.

Proposition 2.6. (1) Let M be a Kisin module and put M = Og @M. Then, we have a canonical
isomorphism Te (M) ~ To, (M) of Zy|Gx]-modules.

(2) Let M be a free (resp. torsion) Kisin module. Then the inclusion & — W (R) induces a natural
isomorphism Te (9M) ~ Home (M, W(R)) (resp. Te(IM) ~ Home (M, Qp/Zy @z, W(R))) of
Z,[Gr]-modules.

(3) Assume that ™ (f(u)/u) is not a power of E(u) for any n > 0. Then the contravariant functor
Ts: Modg — Repy, (Gr) is fully faithful.

(4) The contravariant functors Te : Modg — Repy (Gx) and Ts: Modg_ — Repyo, (Gx) are ezact
and faithful.

Proof. Assertions (1) and (2) for free Kisin modules are [CL, Proposition 3.3.1], and a proof for
the torsion case is essentially the same. For this, the proof of [Lil, Corollary 2.2.2] is helpful for
the readers. The assertion (3) is [CL, Proposition 3.3.5]. To show (4), it suffices to show that
Modg — Modp, and Modg_ — Modo, ., given by 9 — Og ®e M are exact and faithful. The
exactness follows from the fact that the inclusion map & — Og¢ is flat. The faithfulness follows
from Proposition 2.2 (2) or Corollary 2.4. O



Let Repl™(G) be the category of torsion crystalline representations of G with Hodge-Tate
weights in [0, r]. Here, a torsion Z,-representation 7" is torsion crystalline with Hodge-Tate weights
in [0,7] if T is a quotient of lattices in a crystalline Q,-representation with Hodge-Tate weights in
[0,7]. The following is the main results of Section 5 of [CL].

Theorem 2.7 ([CL], Theorem 1.0.3). Assume v,(a1) > 1. Then there exists an anti-equivalence of
categories between the category Mod16 of free Kisin modules of height 1 and the category (p—div o, )
of p-divisible groups over the ring of integers O of K. If M is a free Kisin module of height 1, then
the Gr-action on Te(M) naturally extends to G. This induces an anti-equivalence of categories

between Modg and Rep%’:riS(G). Moreover, the following diagram is commutative:

~

(p—div,0,) = Modg

~ ~

Ty Te
Rep ™ ()

Assume that vp(a1) > 1. Let &(1) be the free Kisin module of rank 1 corresponding to
Zp(1) via Theorem 2.7. Let ¢y be a generator of &(1). By [CL, Lemma 5.2.1 (2)], we have
w(e1y) = pok(u)e(ry for some po € &*.

Cartier duality. Here we give a Cartier duality theorem for étale p-modules and Kisin modules.
Since arguments here are completely the same as [Lil, Section 3.1], we only give a brief sketch
here. We fix an integer r > 0. A lot of notion in this subsection depend on the choice of r but we
omit it from subscripts for an abbreviation.

Assume that v,(a;) > 1. Let o € 6™ be as in the previous section. Let &Y be the free Kisin
module of rank 1 such that p(¢) = (uoE(u))"e. Here ¢ is a generator of &Y. (Clearly, we have
GY =6(1) if r = 1.) We see that &Y is of height r. We set OY := Og ®s &V, which is an étale
p-module. Note that we have isomorphisms Tp, (0f) ~ Ts(6Y) ~ Z,(r). For any Kisin module
M, we define an G-module MY by

mY Homg (M, S) if M € Mod,
" | Homg(M,Sy) if M € Modg_.

For any étale po-module M, we define an Og-module MY by

Y Homoe, (M, O¢) it M € Modop,,
" | Homp,(M,O¢ ) if M € Modo, .

We then have canonical parings

(o) mxmY — &Y if 9 € ModL,

() x MY — S, if M € Modls_
and

() M x MY — O if M € Modo,,

() M x MY — Of if M € Modo, ..

Proposition 2.8. Assume that vy(a1) > 1.
(1) There exist a unique p-semi-linear map pprv: MY — MY which satisfies the following:

(a) (MY, @pv) is an étale p-module,

(b) wav is compatible with the pairing {-,-) for M,



(¢) Tos(MY) = To.(M)"(r).

(2) Suppose that M = Og @g M. There exist a unique p-semi-linear map ponv : MY — MY which
satisfies the following:

(a) (MY, popv) is a Kisin module of height r,
(b) omv =1® pomv. In particular, prv is compatible with the pairing (-,-) for 9N,
(¢) Te(MY) = T (M) (r).

Proof. The same proof as [Lil, Section 3.1] proceeds. O

Comparison morphism of Kisin modules. We define a comparison morphism between Kisin
modules and their representations. Precise arguments are given in [Lil, Section 3.2].

Let 9t be a Kisin module of height . We define a W (R)-linear map tg: W(R) ®s M —
W(R) ®z, Ts(9M)" by the composite

W(R) ®e M — Homy, (Ts (M), W (R)) ~ W(R) ®z, Te (M),

where the first map is given by = — (f — f(z)) and the second is the natural map. It is not
difficult to check that (g is p-equivalent and G-equivalent.

Assume that vp,(a;) > 1. Take any generator f of T (&(1)) and set t := f(e(1)) € W(R). Since
f is compatible with ¢ and is a generator of Tg(S(1)), we see

o(t) = poE(u)t and te W(R)~ pW(R).
Such t is unique up to multiplication by Z; and is independent of the choice of f.

Proposition 2.9. Assume that v,(a1) > 1. There exist natural W (R)-linear morphisms
ts: W(R) @6 M — W(R) ®z, Te(MM)"

and
15 W(R)Y @z, Ts (M) = W(R)(—r) @ M

which satisfy the following:
(1) ts and 1§ are p-equivalent and Gr-equivalent.

(2) If we identify W(R)Y = W(R)(—r) = W(R), then we have 1§ ots = t" @ Idop and s 01 =
® IdTG (v -

Proof. The proof is completely the same as that of [Lil, Theorem 3.2.2]. O

Corollary 2.10. Assume that v,(a;) > 1. The maps 1 and 1§ are injective, and we have
' (W(R) @z, Tes(M)Y) C Im(1s) and (W (R)(—r) ®s M) C Im(1&).

3 Lattices in crystalline representations
In this section, we study Galois actions on Kisin modules which corresponds to crystalline repre-

sentations. It gives an anti-equivalence between a category of Kisin modules with certain Galois
actions and a category of lattices in crystalline representations with some Hodge-Tate weights.



3.1 (p,G)-modules

Let I/(\'E/K be the Galois closure of the extension K, /K and put G = Gal(?/ffﬂ). Following [CL],
we set O, 1= 6[[E(“)p}][1/p} C B, . Tt is not difficult to check I+Da =uD, and O, /110, ~ K.

We note that we have S[£ ")p]] G[[“ ] € Aeis and 6[[ (w)” ] is p-adically complete and ¢-

stable. In the rest of this paper, we fix the choice of a Ko- subalgebm Rk, of BC]rlS which satisfies
the following properties:

e O, C Rk, and v(Rk,) = Ko,

° RKO CB+

s is stable under ¢ and G-actions, and

e the G-action on Ry, factors through G.

Remark 3.1. (1) Such Ry, exists. In fact, the Ko-subalgebra of B, generated by {gz | g €
G,z € O,} satisfies all the desired properties.

(2) In the classical setting f(u) = uP, an explicitly described R, has been considered. For this,
see [Li2].

We set R := R, N W (R). By definition, we see that R C W (R) is stable under ¢ and G-actions,
the G-action on R factors through G, and the map v induces isomorphisms Ry /I+RK, ~ Ko
and R/I, R ~ W(k).

Definition 3.2. A (¢, G)-module (of height r) is a triple 9 = (M, , G) where
(M, ) is a free Kisin module M of height r,

G is an R-semi-linear continuous? G-action on R ®, ¢ M,

M C (R @p,6 M=
We denote by Modgé the category of (¢, G)-modules of height 7.

We define a Z,-representation T( ) of G for any (¢, G) module 90 by

T(9M) := Hompg (R ®y6 M, W(R)).

Here, the G-action on T'(9M) is given by (¢.f)(z) := g(f(g~(x))) for f € T(M), g € G and
z € R ®, M. Note that we have a natural isomorphism of Z,[G]-modules

9: T (9M) 5 T(90)

given by 0(f)(a®z) := ap(f(z)) for f € Te(9M), a € R and 2 € M (see the proof of [Li2, Theorem
2.3.1 (1)]). In particular, T(9M) is a free Z,-module of rank d, where d := rankgM. Hence we

obtain a contravariant functor .
. N
T: Modg™ — Repy, (G).

Note also that we have a canonical isomorphism 7'(91) ~ Homyy (g), (W(R) ®,,6 M, W(R)).

Following [CL], we set B, := W(R)[[%]][l/p] W(R )[[“pe]][l/p] which is a subring of B
stable under ¢ and G g-actions.

cris?

2This means that the G-action on W (R) ®z (7/?\,®%6 M) = W(R) Q,,e M induced by the G-action on 7/?\,®%6 m
is continuous with respect to the weak topology of W (R).



Definition 3.3. (1) We denote by ’ Modgé’mriS the full subcategory of Modgé consisting of objects
M which satisfy the following condition: For any g € G and 2 € M, we have

glez)—(1®x) € plgu — u)Bu Rp,& M.

(Note that, if this is the case, g(1 ® x) — (1 ® z) is in fact contained in p(gu — u) By ®y,.e M N
MW (R) ®@,,6 M since we have p(gu —u) € IMNW(R) by [CL, Lemma 2.3.2].)
(2) We denote by ModgG’CriS the full subcategory of ModgG consisting of objects M which satisfy
the following condition: For any g € G and = € M, we have

gl®x)— (1®z) € p(gu—u)BL

cris

Ry, M.

(Note that, if this is the case, g(1 ® z) — (1 ® ) is in fact contained in ¢(gu — u) B

cris ®‘P76 mn
IMW(R) ®,.6 M since we have p(gu —u) € INW(R) by [CL, Lemma 2.3.2].)

By definition, the category ’ ModgG’C]riS is a full subcategory of ModgG’CriS.
Remark 3.4. To understand (¢, G')—module, it is very important to study the structure of the
Galois group G and to find a “good choice” of Rk,. In the classical Kisin’s setting f(u) = u?,
these are well studied. For this, see [Li2]. R

We should remark that in this classical setting, we may consider (¢, G)-modules as “linear data”
like (o, T')-modules. In fact, G is topologically generated by Gal(f(l/ K,) and a (fixed) generator
7 of Gal(IA{E/K(upx)). Here, i, is the set of p-power roots of unity. Hence the G-action on a
(o, G’)—module is essentially determined by the T-action only.

r,G,cris

Remark 3.5. To understand objects of the category Modg , studying ideals I{p(gu — 1) By N
IMNW(R) or I, := ¢(gu — uw)BL, N IMNW(R) of W(R) must be important. However, it is not so

easy (at least for the author). Later, we give partial results in Propositions 4.18 and 4.19. Here
we describe some known facts about I, and give some remarks.
(1) Suppose v,(a;) > 1. Then we can check I, C IMHTW (R) as follows: Let t be as in the previous
section. It follows from o(t) = poE(u)t and [CL, Lemma 2.3.1 (2)] that t is not in TIMW(R) and
o(t) is a generator of IMNW(R). Take x = p(gu — u)y = ¢(t)z with y € B and z € W(R). It
suffices to show z € I, W(R). By [CL, Lemma 2.3.2] (see also Proposition 3.11), we have gu —u €
©(t) [, W (R). This implies p(gu —u) € p?>() I W(R) = o(E(u))p(t) I . W(R) C o(t)I, W(R), and
thus we obtain z = ¢(gu — u)y/p(t) € W(R) NI Bf, = I, W(R) as desired.
(2) (Kisin’s setting) If f(u) = u?, then we can show that I, C w?IMW(R) as follows: Since
gu —u € uW(R) in this case. it suffices to show w?BY. N IMW(R) c w?IMW(R). Take any
r = uPy € wPB}, N MW (R). By [Li3, Lemma 3.2.2], uPy € W(R) shows y € W(R). On the
other hand, uPy € IMW(R) and ¢™(u?) ¢ Fil' Byg for any n > 0 implies that y € I BT. . Hence
we have y € TIW (R), which induces = € «? I (R) as desired.

The ideal u? IINW (R) of W (R) plays an important role for studies of (¢, G)-modules (cf. [Li2])
which correspond to lattices in crystalline representations. It allows us to study reductions of
crystalline representations and also gives interesting applications such as the weight part of Serre’s

conjecture (cf. [Ga],[GLS1],[GLS2]).
Comparison morphism of (¢, G)-modules. Let 9 be a (i, G)-module of height 7. We define
a W(R)-linear map i: W(R) ®,,e M — W(R) ®z, T(M)" by the composite

W(R) ®p.6 M — Homz, (T(9M), W (R)) ~ W(R) @z, T(M)",

where the first map is given by = — (f — f(z)) and the second is the natural map. It is not
difficult to check that i is @-equivalent and G-equivalent. By the same argument as that in the
proof of [Li2, Proposition (2),(3)], we can check the following.



Proposition 3.6. (1) We have i ~ W(R) @, w(r) ts, that is, the following diagram is commuta-
tive.

Ry M L~ W(R) ®z, T()"

W(R)
W(R)®0Vlz
W(R) ®y.6 M—= ~ W(R) @z, Te(MM)V.
Here, ¢*1s := W(R) @ w(r) ts-

(2) Assume that vy(a1) > 1. Then the map i is injective and we have (W (R) ®ZPT(92AR)V) C Im(7).
Here, to is any generator of INW(R) (e.g., to = p(t) (cf., [Fo2, Proposition 5.1.3])).

3.2 Main Results

We often use the following conditions.
Condition (P): ¢"(f(u)/u) is not a power of E(u) for any n > 0.
Condition: v,(a1) > max{r,1}.

Note that these conditions are satisfied if a; = 0. We denote by Rep%ris(G) the category of

G-stable Zy-lattices in crystalline Q,-representations of G with Hodge-Tate weights in [0, r]. Now
we state our main theorem of this paper.

Theorem 3.7. Assume the conditions (P) and v,(a1) > max{r,1}.
,Geris _ .G cris
(1) We have Modg ™" = "Modg "“"™. o
e contravariant functor T induces an anti-equivalence of categories between Modg™"“"™ an

2) The contravariant functor T ind ti-equival tegories between Modz™ ™™ and

r,cris
Rep; "(G).

Summary, we have A A

/ModgG,crls _ ModgG,crls ; Repg;:rls(G)

under the conditions (P) and vp(a1) > max{r,1}. The theorem is an easy consequence of the

following result, which we show in the rest of this section.

Theorem 3.8. (1) Assume the conditions (P) and vy(a1) > 1. Then the contravariant functor
T: Modg® — Repy, (G) is fully faithful.

(2) Assume the condition vy(a1) > max{r,1}. Then the contravariant functor T': Mo
Repy, (G) has values in RepZ’C“S(G). If we furthermore assume the condition (P), then it has
values in Rep%’pcris(G).

(3) Assume the conditions (P) and vy(a1) > max{r,1}. Then the contravariant functor T': ’ModgG’Cris —
Rep; """ (G) is essentially surjective.

dgG,crls N

The contravariant functor Te: Modg — Repy (Gx) is fully faithful under the condition (P).
By the condition v,(a1) > 1, we know the injectivity of comparison morphisms (cf. Corollary
2.10 and Proposition 3.6 (2)). Thus Theorem (1) follows by completely the same way as the last
paragraph of [Li2, Section 3.1] and so we leave the proof of (1) for the readers.

In the rest of this section, we show Theorem 3.8 (2) and (3).

Remark 3.9. In fact, we can remove the assumption (P) from Theorem 3.8 (1). See Section 3.7.
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3.3 Some notations and Properties

Before a proof of Theorem 3.8 (2) and (3), we give some notations and their properties.

The map &,. Let MM € Mod be a Kisin module of rank d and set M := ¢*9M/up*M.

Lemma 3.10 ([CL], Lemma 4.5.6.). Assume that vy,(a1) > r. Then there exists a unique @-
equivalent O -linear isomorphism

goz: Da ®W(k) M % Da ¥s cp*im
whose reduction modulo u is the identity map on M.

We recall how to define &,. Let ¢1,..., ¢4 be a basis of 9 and let A € M;(S) be a matrix such
that o(e1,...,eq) = (e1,...,¢q)A. Put ; = 1 ®¢; € o*IM for each i. Then ey,...,eq is a basis of
©*M and p(eq,...,eq) = (e1,...,eq)p(A). Put & := e; mod up*M for each i. Then é;,...,8&4 is
a basis of M and p(e1,...,84) = (€1,-.-,€q)p(Ag) where Ag = A mod uS € My(W(k)).

It was shown in the proof of [CL, Lemma 4.5.6] that the matrix

p(A) - " (A)e"(Ag 1) - p(Ag )
converges to an element of GL4(D,). Putting

Y = lim ¢(A)- '-90”(14)90“(1461) : "‘P(Aal)’

n—oo

we define §,: Do Quw(xy M =0, Qs @M by E4(E1,...,84) = (e1,...,eq)Y.

The map ¢&,. Let T be an object of Rep%’}fris(G) and put V = T[1/p]. Let D = D¢s(V) =
(Basis ®g, VV)¢ be the filtered p-module corresponding to V. Let O be the subring of Ko((u))
consisting of those elements which converge for all z € K with v,(z) > 0. We equip O with a

Kp-semi-linear Frobenius ¢: O — O such that ¢(u) = f(u). We see that O is a @-stable subring
of O,. By [CL, Section 4.2], there exists a p-module M = M (D) over O such that

e Dy C M C A "Dy where Dy := 9O ®x, D and X :=[][,—, " (E(u)/E(0)) € O.

e M is of height  in the sense that the cokernel of the O-linearization 1®pa: O®p o0 M — M
of o is killed by E(u)".

e M is étale in the sense of [CL, Section 4.4].

By Theorem 4.4.1 of loc. cit., there exists a Kisin module 9t C M of height r such that
O ®e M = M. Now we define an isomorphism &, : O, @, D = O, ®e ¢*M as follows: The
isomorphism 1 ® ¢: p*D = D induces an isomorphism 1 ® ¢: ¢*Dy = Dy. Thus we obtain an
injection ¢': Dy = ©*Dy — *M ~ O ®g *M. Then we define £/, = O, ®o &’. It is shown in
Lemma 4.2.2 of loc. cit. that £, is an isomorphism.

The map ¢y. Following Proposition 4.5.1 of loc. cit., we define a Gr-equivalent injection ¢o: T (9N) —
V by the composite

T@ (m) = Homg#,(im, W(R)) — Homg’%pil(@*/\/l, BJr )

cris
— Homgm%pﬂ(f)a XRo (p*M, Bctis)

= Homgp,, o ril(Oa @k, D, BL,)
=~ ‘/cris(D) = ‘/7

where the first arrow is given by f — (a®@z € O ®, e M = p* M — ap(f(z))), the second and the
fourth arrows are natural isomorphisms, and the third arrow is given by (f — fo¢/). We omit
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definitions of filtrations of various modules appeared above since precise informations of them are
not so important here. We only note that definitions of filtrations are given in [CL, Section 4].

The G-action on u. We consider a difference between gu and u for g € G. We recall that
flu) =3P au' =uP +ap_uP™ + -+ + ayu € Zy[u] with the property f(u) = u? mod p.
At first, here is a Cais-Liu’s observation.

Proposition 3.11 ([CL], Lemma 2.3.2). Let g € G be arbitrary.
(1) We have gu —u € INW(R).
(2) If vy(ay) > 1, then we have gu —u € IMHW(R).

We use the following proposition in the final section.

Proposition 3.12. Let jo be the minimum integer 1 < j < p such thatvp(ja;) = 1. Let g € GNGy
and N > 1 the integer such that gnny_1 = n_1 and gnny # wn. We denote by u the image ofu
for the projection W(R) — R. Then we have vg(gu — i) = p/(p — 1) + (jo — 1)/(e(p — 1)).

Proof. Since vg(gt — @) = lim,,—, o p" v, (gm, — Ty, it suffices to show that v,(gm, — m,) = ¢, for
n > N, where ¢, :=p" /((p — 1)p") + (jo — 1)/ (ep™(p — 1))
We note that we have an equation Y %, a;(¢97l, — 7,) = gmp—1 — Tp—1. Putting plo —

ZJ =0 A+ (E—;]> 7}, we have

p p i—1 . p
1 _
>t~ ) = 33 (1) tom = m) el = 300 om, ~ m,)
i=1 i=1 j=0 =1

Hence we obtain that gm, — m, is a solution of the equation
P
Zbe)Xe 1—71'71,1):0.
£=1

We note that we have be’ ) — 1 and

045\ v(ag+-)+e% for0<j<p—V¥,
Up(a£+j< ]J)W%){ ? 1_|_]P—' i fori=mnp—1/¢
b j=p

if1<i<p-—1.

The case jy = p: By the assumption vy(ai1),...,vp(ap—1) > 1, we have
U®W)=1+3:£ (3.1)
p\¥n epn

for 1 < ¢ <p—1. Now we show v,(gm, — m,) = ¢, by induction on n > N.
Suppose n = N. Then gny — mn is a solution of the equation

p—1
ST TUx =0
£=0

Hence it is enough to show that the Newton polygon of the polynomial Y 7~ HI)X e Z,[X]is
the line segment, denoted by [y, connecting (0, (p — 1)cn) to (p —1,0). T h1s follows immediately
by (3.1).

12



We suppose that the assertion holds for n and consider the case n + 1. We recall that gm, 1 —
Tp41 1S a solution of the equation

P
Zbl 1Xe (97 — mpn) = 0.
(=1

Thus it is enough to show that the Newton polygon of the polynomial > }_, bgj_lX t—(gmn — )

is the line segment, denoted by [,,1+1, connecting (0, ¢,,) to (p,0). This follows immediately by (3.1)

again.

The case jo < p: Let s be the number of integers j such that 1 < j < p —1 and vp(a;) = 1.

By assumption we have s > 0. Let j_1, jo,J1,--.,Js—1 be integers such that j_; =0 < jp < j1 <
- < js—1 <p—1and vy(aj,) = =wvp(a;,_,) =1. Then we see

(3.2)

(b(@)— 1—|—j§p]€ if jr—1 <€ < jpforsome 0 <k<s—1,
1t E ifdea<i<p-l

By a similar strategy to the proof of (1), we can show v,(gm, — m,) = ¢, by induction on n > N.
We leave a proof to the readers. O

We recall that O, = S[ZL][1/p] € BY;, and S[E] = S[L] C Aesie.

Cris

Lemma 3.13. (1) We have u® € pli/ (ePI+/ (P A o for any i > 0, where [-] is the floor function.

(2) We have
ep > i1
S[L-] = {} Cap | a; € W(k)}.

p =0

Proof. (1) Write i = epj + h with 0 < h < ep and j = pk + b/ with 0 < A’ < p. Note that we have
j = [i/(ep)] and k = [i/(ep?)]. Since we have u’?/p € E(u)?/p + pAcris, we see (u°?/p)P € pAcyis-
Thus we obtain u’/p? = ul(u? /)" (u? /p)P* € pF Agirs.

(2) If & = 3200 aip~ /Py with a; € W(k), then z = Z] 0 {Zh o Gepj+ht }(ueP/p)j €
GH“TT]] Conversely, let = = Y 77" z;i(u® /p)’ with z; € &. Writing z; = 3777 a;;u’ with a;; €
W (k), then we have z = >_;7 {Zi7j2076pi+j=hp*iaij} u. If we have 4,5 > 0 and epi + j = h,
then we have i < [h/(ep)] and hence p~*a;; € p~ M/ (PIW (k). O

We recall that Bo = W (R)[ZX](1/p] = W(R)[“-][1/p] € B
Lemma 3.14. For any g € G and x € O, we have gr — z € (gu — u)B,.

= Yo’ with a; > —[i/(ep)] (see Lemma

Proof. We may suppose x € 6[[“:

3.13). For i > 1, we have gu' — u’ = (gu — u) Z;;B <;> (gu — u)*~*7Ju? . By Proposition

3.11, we have gu —u € Fil'W(R) € u*W(R) + pW(R). Thus we have (gu’ — u’)/(qu — u) =
Z;;%) hoo ” cignpluciTiTITh R = 50 > (myesy, Cignp TEEPyk [plR/ )] for some ¢, €
W (R). Here, S;, is the set of pairs (j, h) of integers such that 0 < j <i—1,0<h <i—1—j,e(i—
1—j—h)+j = k. Note that, if S;x is not empty, then k <e(:—1—-0—-0)+(i—1) = (e+1)(i —1).

Thus we have
(e+1)(i—1)

gut —ut 3 DY A
- hp k/(e
qu —u = Gesa p[ /( p)]

For (j,h) € Sik, we have v, (a;p"TE/ (P} > —j/(ep) + h+ k/(ep) =1 =h (1 —1/p) + (e — 1)(i —
j—1)/(ep) =1 —1/(ep). Since h,i —j —1 > 0, we have v, (a,ph+[k/(ep)]) —1—1/(ep), that is,
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U (aiphﬂk/(ep)]) > —1. Thus t; := Z(j,h)esik aicijhphﬂk/(ep)] is an element of p~1W(R). On the
other hand, wehaveh:(e(ifl)f(efl)jfk)/ez(e(ifl)f( -1Dl—-1)—k)/e=(i—k—-1)/e
and hence v, (a; th/(ep)]) (i—k—1)/e-(1—=1/p)+(e—1)-0/(ep) —1—1/(ep) =: my(i). Since
myg () goes to oo as i — 0o, we obtaln that t = > ;5144 (cq1) tik converges in p 1W(R) (here,
tir, := 0 if Sk is empty). Now we claim that the following equality holds;

o (e+1)(i-1)

Z Z tipp~ B/ Py — Ztkp*[k/(ef’)]u’“. (3.3)
i=1

k=0
Admitting this equality, we complete the proof since we have

oo (e+1)(i—1)

gr —x = iai(gui - ui) gu — u) Z Z tikp_[k/(ep)]uk
i=1 i=1

= (gu — u) Z tep W/ Plyk € (gu — u)B,.
k=0

Hence it suffices to show (3.3). Denote by « and f the left hand side and the right hand side of
(3.3), respectively. For simplicity, we put ug = p~*/(¢P)ly% . Since we have

m (e+1)(i—1) (e+1)(m—1)
a—-p=|a-— Z Z tigug | — | B— Z trug
=1 k=0
(e+1)(m—1) m (e+1)(i—1)
Y sy Z b
k=0 i=1
for any m > 1, it suffices to show that ~,, := ,(erOl)(m Dty — > Z(GH V=) 4, converges

to zero p-adically in B[, . Note that we see 7, = Z EH) (m-1) > oie gt tikuk. Let s > 0 be
any integer. By Lemma 3.13 (1), there exists an integer ko such that uy € p*TtAgs for any
k > ko. Since sequences {tio}i, - - ., {tik, }: converge to zero, there exists my large enough such that
ti, € p°W(R) for any 0 < k < ko and ¢ > mg. Therefore, if m > my, the decomposition

ko LS (e+1)(m—1)
=3 Y et Y Y tum
k=0i=m-+1 k=ko+1 i=m+1
and the fact that Zfim_H tix € p~ W (R) implies vy, € p®Acsis. O

3.4 Essential image of T

The goal of this subsection is to show Theorem 3.8 (2). We continue to use the same notation as
in previous section.

Lemma 3.15. For any M € Modgé’cris, we have £, (M) C (Bl ®,6 M)

Proof. It suffices to show g((e1,...,eq)Y) = (e1,...,eq)Y for any g € G. We define X, €
GLa(W(R)) by
gler,...,eq) = (e1,...,eq)Xg.
It is enough to show X,g(Y) =Y. To simplify notation, put u, = gu — u. We know X, — I; €
(ug)Mq(B, Hence we have X, = I + ¢(uy)Y, for some Y, € My(BL, ). Furthermore, we

crls) Cris
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have X,9¢p(A) = ¢(A)p(X,) since ¢ commutes with the G-action. Thus we have
Xgg(p(A) - " (A" (Agh) - (A )
=X,90(A)gp*(A) - g™ (A)p™ (A5 ") - (Ag )
=p(A)p(Xg)g*(A) - - g™ (A)p™ (A5 ) -+ 0(Ag )
P(A)P*(A)p*(Xg)gp*(A) -+ g™ (A) ™ (A1) -+ 0(Ag )

=p(A) - " (A)p™ (Xg) " (Ag1) -+ 0(Agh)
=p(A) " (A)p™(Ag ") (A )
+ " (ug)p(A) - w”(A)w"(Yg)w"(Aal) ep(Agh).

Hence the proof completes if we show that Z,, := @™+ (u,)(A) - -- " (A)p™ (Yy) ™ (A1) - p(Ag )
converges to zero p-adically in Bcrls Let A > O be an integer such that pY, € My(Acs). Since
90 is of height r, we see that Z, is contained in @™ (uy)/p™" - p~* My(Aeris). Since " (ug)/p™"
converges to zero by [CL, Lemma 2.2.2], we obtain the desired result. O

Proof of Theorem 3.8 (2). We continue to use the same notation. First we assume the condition
vp(a1) > max{r, 1}. Proposition 3.6 (2) and Lemma 3.15, we have injections

M5 (B ®p6 M)C & (B, @z, TO)V)E.

cris Cris

Hence we the equality dimg, (B ,®z, T(OM)V)E = dimQPT(im)V[l/p] This implies that 7'(9)[1/p]
is a crystalline Qp-representation Wlth non- negative Hodge-Tate weights. In the rest of this proof,
we show that the Hodge-Tate weights of 7'(9)[1/p] are at most r.

From now on, we assume the condition ( ). Under this assumption, we know that Tg is fully
faithful (cf. Proposition 2.6). Put V = T(M )[1/p] and D = Dgs(V). Take an integer 7/ > 0
such that Hodge-Tate weights of V' are at most r'. Let M = M(D) be the ¢-module over O
corresponding to D and take any free Kisin module 9" C M of height r’ such that O @g M = M.

We claim that 90U is of height r. Note that Te (9) and T (') are lattices of V. By replacing
M’ with some p’OM, we may assume that we have Ts (9M) C T (MM'). Let ¢ > 0 be an integer such
that Tg(OM') C p~ T (M). We consider the following commutative diagram.

Te m)%p% ()

T (p*0)

Here, p~ T (M) = T (ptM) in the diagram is the map given by f — flpe, and the other arrows
are natural injections. Since T is fully faithful, we obtain maps n': D' — 9 and n: p°N — M’
such that 7’ o 7 is the inclusion map p°M — M. We see that n and 1’ are injective and p°9M C
7 (9M'). We regard I as a p-stable submodule of 9 by 7’. Since /M’ is killed by a power of p,
Proposition 2.2 shows that the natural map 9MM/M' — O¢ ®e M/M’ is injective. Thus we obtain
the fact that D/9 is p/-torsion free in the sense that Anng(9M/M') is zero or of the form p’G.
It follows from [Fo2, Proposition B.1.3.5] that 9’ is of height r. In particular, M is of height r.

Note that £/, induces an isomorphism ¢p*M/E(u)p*M ~ K Qk, D =: Dg. If we define a
decreasing filtration Fil'p* M of p* M by

Fil'p*M = {z € p*M | (1@ ¢)(z) € E(u)' M},
then the natural projection
P*M = p* M/E(u)p* M ~ Dy
is strict compatible with filtrations (cf. [CL, Corollary 4.2.4]). Since M is of height r, we have
Fil" ™ p* M C E(u)@* M, which induces the fact Fil"™' Dy = 0 as desired. O
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3.5 Essential surjectiveness of T

We show Theorem 3.8 (3). Let T' be an object of Reeris(G) and put V = T[1/p]. Let D =
D¢yis(V') be the filtered p-module corresponding to V. Throughout this subsection, we identify V'
with Veuis(D) = Homg, (D, BX,.) N Homg ri(Dr, Big)(C Hompg, (D, BL,.)). Let M = M(D)
be the p-module over 9 corresponding to D. By Theorem 4.4.1 of loc. cit., there exists a Kisin
module M C M of height r such that O ®g M = M. In Section 3.3, we defined a Gr-equivalent

injection ¢p: T (M) — V. The image of ¢y might not coincide with 7. However, we have
Lemma 3.16. Assume the condition (P). Then we can choose M so that 1o(Te(MN)) =T
Proof. We identify V' with Homg , ri(¢* M, BL,.) by isomorphisms Home o, pi(¢* M, BL,) ~

cris cris
Homgp , o ril (Da®@o¢*M, Bctis) ~ Homg o il (Da® K, D, Bctis) ~ Veris(D) = V (see the definition
of 1p). Under this identification, ¢ is the injection
Lo TG (gﬁ) = H0m67W(R) (gﬁ, W(R)) — HOIHQW’FH(QO*M, Bctis) =V

given by to(f)(a ® z) = ap(f(z)) for f € Te(M), a € O, z € M (here we identify ¢* M with
O @y, M). Put L = 19(Tes(9M)). For any integer £ > 0, we have natural injections T (p~*90) —
Ts(M) — Te(p*M) induced by embeddings p!OM C MM C p~ M. It is not difficult to check the
equality 1o(Ts(p™*OM)) = pT*L. Thus by replacing 9 with p~ M for ¢ large enough, we may
assume that L is a submodule of T. Let N — M be the morphism of free étale p-modules which
corresponds to the natural injection L < T'. This implies that we have the following commutative
diagram:

TéTog(N)

L<"—Tp. (M)

We denote by 7 the isomorphism T, (M) ~ L in the diagram. We see that N — M is injective and
M/N is a torsion étale ¢p-module killed by p°. Here, ¢ is any integer ¢ > 0 such that p° kills T'/ L.
Let g: O¢ ®s M = M be the morphism of étale p-modules which corresponds to the composition
To. (M) = L — Ts(M) 5 To, (O @ M). We have the following commutative diagram:

to

To. (M) % L —~1> T (ON) — To,. (O ®@c M)

LO

To: (O @ M)

To (MY e

Let pr: M — M/N be the natural projection. Then 9V := ker(prog) C 9 is a p-module of height
r by [Fo2, Proposition B.1.3.5]. Put 9 = W [1/p] N (O @e ). It follows from [CL, Lemma 3.3.4]
that 91 is a free Kisin module of height r. By the condition (P) and [CL, Proposition 3.3.5], the
embedding O s N = O ®s N — O ®s M induces an embedding N — M. We see that we
have an isomorphism g': O¢ ®g M = N which makes the diagram

N<—=0:@sN
g

l

M<—;Og®@m

commutative. Here we consider the following commutative diagram.
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T —To.(N) —=To, (0 @¢ N) <—— Ts(N)

)]

L —;> To, (M) —=s To, ((95 Rs gﬁ) = Ts (93?)
To,(9)
The composite map L = To, (M) 5 To, (O @ M) = Te(M) in the diagram is just o5’ It
suffices to show that the inverse ¢, of the composite map 7' = To, (N) = To, (O @ N) = Ts (N)
is just ¢p: Te(MN) — V.
Since M/N' C M/N is killed by p¢, we have p C N C 9 C M. Consider the following
diagram:

Te (M) Te (M) T (p°IM)

zlLo zLLg :lm

IC TC p LS V = Homg o, mil(¢p*M, Bt

cris

The biggest square in the diagram clearly commutes. The left square in the diagram also commutes
by definition of ¢{. Thus we see that the right square commutes. This implies that ¢{ is the map
to: Te (peM) — V restricted to T (91), which must coincide with ¢o: Te(N) — V. O

In the rest of this subsection, we always assume the condition (P) and vy(ai) > max{r,1}. Let
M be as in Lemma 3.16. Then ¢g: Te (M) — V induces an isomorphism T (M) ~ T. By this
isomorphism, we equip T () with a G-action. Here, we consider the following diagram:

By ®K, D= Homg, (Vuris(D), Bl;,) = By, ®q, Veris(D)¥ === B, ®z, T"
-Je
Bl ®s ¢*MC e Bl @z, Te(M)" =<—— Bl ®z, T"
to
W(R) g6 MC e W(R) @, Te (W)Y <= W(R) @z, T
) (3.4)
The square

B:;is Qs (p*m’[C—> Bctis ®Zp v
W(R) Rp,& M W(R) ®z, TV

in the above diagram is clearly commutative. Furthermore, by direct computations, we can check
that the square

B;is ®KO D—— B;is ®Zp TV

B;is ®e (p*f)ﬁc—> Bo;is ®Z,, TV

in the diagram is also commutative (here we note that &/ appears in the definition of ¢y). Hence,
seeing the biggest square in the diagram (3.4), we obtain a commutative diagram
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Ry S—

cris

W(R) @y, M~ W(R) @z, T

Rz, v

By this diagram, we regard B, @k, D, W(R) ®z, T" and W (R) ®,,e M as ¢-stable submodules
of B, ®z, TV. Note that B}, @, D and W(R)®z, T" are G-stable submodules of B}, @z T".

cris cris cris

Lemma 3.17. Let the notation be as above.

(1) Gy acts on *IM trivial.

(2) The G-action on W(R) @z, TV preserves W(R) @, M.
(3) The G-action on W(R) ®@,,6 M commutes with .

(4) G(¢*M) C R @y, M.

Proof. (1) is trivial. If we admit (2), the statement (3) follows from the fact that W(R) ®,.ec M
is a ¢-stable submodule of W(R) ®z, TV and the G-action on W(R) ®z, TV commutes with ¢.
Hence it suffices to show (2) and (4).

We show (2). Take any g € G. Let eq,...,eq be a basis of ¢*9M. Note that this is also a
basis of B,  ®k, D. Hence we have g(ey,...,eq) = (e1,...,eq) X, for some X, € GLq(B},)). By
Proposition 3.6 (2), ¢(t)"g(e1,...,eq) = (e1,...,eq)Aq for some Ay € My(W(R)). Hence we have
o()" X, = A, € My(W(R)). Note that ¢(t) is a generator of T'''W (R) by [Fol, Proposition 5.1.3].
Hence we have X, € My(W(R)) by [Li4, Lemma 3.1.3].

Finally we show (4). By (2), it suffices to show that X, has coefficients in Rg,. Put M :=
©*M/up*M. Let &o: Oa Oy M — Do @ ™M, €1 Oq @y D — O @ ©*M and Y be as
in Section 3.3. By [CL, Corollary 4.5.7], we have an equality &, (M[1/p]) = £, (D). By definition of
the G-action on 901, we know that B, ®o, &, is G-equivalent and thus G acts on &, (M) trivial.
This implies g((e1,...,eq)Y) = (e1,...,eq)Y. Thus we have X, = Yg(Y)™!, which is an element
of GL4(Rk,). O

By the above lemma, we have a natural R-semi-linear G-action on ﬁ@’s@ﬁ M, which commutes
with ¢. Since Gal(K/K,) acts on R and ¢*90 trivial, the G-action on R ®,, & M factors through

G. Hence M has a structure of an object of Modgé, which we denote by .

Lemma 3.18. Let the notation be as above. Then we have a natural isomorphism T(9N) ~ T of
Z,[G]-modules.

Proof. We follow the method of [Li2, Section 3.2]. First we recall that we defined a G-action on
T (90) by the isomorphism uo: T (M) ~ T', and also recall that the injection ¢*1g: W(R) ®y &
M — W(R) @z, Te(M)" is G-equivalent by definition of the G-action on W(R) @, & M. We
consider the following commutative diagram:

s

W(R) .6 M—— W(R) ®z, Ts (om)v <~v— W(R) Rz, v
W(R)

Lo
i
D6 M W (R) @z, T(M)

Here, n := W(R) ® 0V. It suffices to show that 7 is G-equivalent. Note that all arrows in the
diagram except 7 are known to be G-equivalent and p(t)W (R) = IMW (R) is stable under the
G-action on W (R). By Corollary 2.10 and Proposition 3.6 (2), we can regard o(t)\W(R)®z, T(m)v
and ()W (R) @z, Ts(M)" as G-stable submodules of W(R) ®,,e M, and thus 7 restricted to
(W (R) ®ZPT(95()V induces an G-equivalent isomorphism ¢(t)W(R) ®ZPT(951)V ~ ()W (R)®z,
T (9M)V. Tt follows from this that 5 is G-equivalent. O
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Finally, we show the following, which completes a proof of Theorem 3.8 (3).

Lemma 3.19. Let the notation be as above. Then 9 is an object of ’ModgG’cris.

Proof. Let eq,...,¢eq be a basis of 9 and let A € M4(&) be a matrix such that p(er,...,eq) =
(e1,...,eq)A. Put e, = 1 ®¢; € ¢*M for each i. Then e,...,eq is a basis of ¢*9M and
oler,...,eq) = (e1,...,eq)p(A). Put M = ¢*M/up*M and &; = e; mod up*M for each i.
Then éy,...,&4 is a basis of M and ¢(é1,...,8q) = (€1,...,€4)p(Ag) where Ag = A mod uS €
Myi(W (k)). Take any g € G and put vy = gu —u. Let X, € GL4(R) be a matrix given by

gler,...,eq) = (e1,...,eq)Xg.
Let Y be as in Section 3.3. Then we have X, = Yg(Y)~! (see the proof of Lemma 3.17 (4)). First

we show X, — Iy € ¢(uy)Ma(Ba). We claim Y € p(M4(9,)). To check this, we use almost the
same method as the proof of [CL, Lemma 4.5.6]. Since 9 is of height r, there exists a matrix
B € My(6) such that AB = E(u)"I;. We denote by Ag and By the image of A and B for
v: Ma(8) - My(W(k)). To simplify notation, we assume F(0) = p. We write A = Ay + uC' by
some C € My(S). Put

Yo = p(A) -+ " (A)p" (A7) - (AT D).

Then Y,, converges to Y and we have
Yop1 —-Yn=9¢ (‘Pn(u)/pr(n—H) ) Zn)

where Z, := A--- " Y (A)p"(CBy)¢™ Y(By)---By € My(&) . Since ¢"(u)/p" ") converges
to zero p-adically in O,, we have >~ (Y11 — Y,) € ¢(My(D,)). Therefore, we have Y =
S (YVag1 = Y) + Yy € o(My(9O,)). Thus we can write Y = I; + ¢(Z) by some Z € My(9O,)
and then we have

Xg=Ta+0(2)g(Y ") = (La+¢(9(2)) — 0(9(Z) — Z))g(Y ")
=9(Y)—e9(2) = 2)g(Y ") = Ia — e(9(Z) = Z)g(Y 7).

By Lemma 3.14, the matrix ¢(g(Z) — Z) has coefficients in ¢(uy)B,. This shows X, — Ig €
o(uy)My(By) as desired.

Now we are ready to finish the proof of Lemma 3.19. Take any g € G and x € 9. We want
to show g(1 ® z) — (1 ® x) € ¢(uy)Ba Dps M. Let x € My1(p(S)) be a matrix such that
1®x = (e1,...eq)x. Then we have g(1®x) — (1®z) = (e1,...eq)(Xy9%x — x). Since we can write
Xy = Ia+ p(uy) X, by some matrix X € My(B.,), we have X,gx — x = p(ug) Xjgx + (9% — x).
Since we have gx — x € p(ug)Mq,1(W(R)), we finish the proof. O

3.6 Compatibility of different uniformizers, and Dieudonné crystals

Suppose the conditions (P) and v,(a;) > max{r,1}. Let T be an object of Rep%’jris(G). Then

there exists a (¢, G’)—module M such that T(iﬁT) ~ T'. Note that our arguments depends on the
choice of a uniformizer = of K, a polynomial f(u) and a system (7, )n>0.

If we select a different choice of a uniformizer 7’ of K, a polynomial f’(u) and a system (7},) >0,
then we get another (¢, G')-module 9.

Question 3.20. What is the relationship between M and N ?

We denote by &, (resp. &,/) the image of the injection W (k)[u] — W (R) given by u — {r}s
(resp. u — {7'}s). We may regard MM (resp. M') as a @-module over &, (resp. &,/). Write
S := 6, (resp. & := &,/). We have comparison morphisms

it W(R) ®p,6 M— W(R) @z, T(M)" ~ W(R) @z, T
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and
' W(R) @6 M — W(R) @z, T(M')" ~ W(R) @z, T"

Theorem 3.21. Assume the conditions (P) and vp(a1) > max{r,1}. Let the notation be as
above. Then we have i(W(R) @y M) = i(W(R) @p,e M'). In particular, we have a functorial
isomorphism W(R) ®,.6 M ~ W(R) @, a M which commutes with ¢ and G-actions.

Proof. Let d be the Z,-rank of T. Put M = ¢©*M/up*M. We have G-equivalent injections
B, @wy M % BY, ©s ¢*M & BY, sz TV. By Lemma 3.15, we have & (M) C (B, ®e

M Ly (Bl ®z, TV)C C Deyis(V). Since the W (k)-rank of M is d, we have isomorphisms

cris

o « D
M[l/p] = (B;ris Be @ m)G = (B+ ®Zp TV)G = DcriS(V)~ (3-5)

cris
Therefore, we obtain the following diagram:
B}, ®e p*M——- > Bt

cris
o~
i

®W(k) M ; B:rris ®K0 (Bo;is ®6 @*m)G ’; > B;is ®K0 Dcris<V>

®z, v

Bctis

Here, two vertical arrows in the diagram are natural maps. We see that the left vertical arrow is
isomorphism by the commutativity of the diagram.

Let eq,...,eq be a basis of ¢*0M and ef,. .., e/, be a basis of p*9'. Seeing the above diagram,

we obtain the fact that i(ey),...,i(eq) is a basis of Bl @k, Deris(V). Similarly, i’(e}),. .., (e})

is also. Hence there exist a matrix X € GLq(BZ,) such that i(ey,...,eq) = '(e},...,e;)X.

On the other hand, if we take any generator ty of IMNW(R), we have t§i'(W(R) ®¢ ¢*M') C

H(W(R) ®z, TV) C i(W(R) ®p,e ¢*IM). Thus we obtain {{X € My(W(R)). By [Li4, Lemma

3.1.3], X € My(W(R)). By the similar manner we can check X ! € M4(W(R)). This finishes the

proof. (The assertion for the functoriality follows immediately by construction.) O

The following statements gives an affirmative answer of [CL, Section 6.3].

Corollary 3.22. Assume the conditions (P) and vy(a1) > max{r,1}. Let T be an object of
Repgjris(G). Let O (resp. M') be a Kisin module with respect to the choice of (f(w), (mn)n>0)
(resp. (f'(u), (m),)n>0)) such that Te(OM) ~ T (resp. Te/(M') ~ T). Then we have a functorial
isomorphism W (R) ®s M ~ W(R) e M’ of p-modules over W (R).

Proof. Let M (resp. M) be a (¢, G)-module with respect to the choice of (f(w), (7 )n>0) (resp.
(f'(w), (7],)n>0)) corresponding to T'. By Theorem 3.21, we have an isomorphism W(R) ®, & M ~
W(R) ®yp,& M. Taking W(R)®,-1,w(r), we obtain an isomorphism W (R) ®s N ~ W(R) ®e/ M.
On the other hand, we have isomorphisms Te(9) ~ T|g. ~ T(N)|q, ~ Te(N). Similarly, we
also have T (M') ~ Te:(N'). By the condition (P) and Proposition 2.6, we have isomorphisms
M ~ N and M’ ~ 9. Thus the result follows. O

Remark 3.23. In fact, we can raplace the conditions “(P) and v,(a1) > max{r,1}” in Theorem
3.21 and Corollary 3.22 with “v,(a1) > 17. See Section 3.7.

The case r < 1. In the case r < 1, we can omit the assumption (P) from Theorem 3.21 and
Corollary 3.22.

Theorem 3.24. Assume vy(a1) > 1. Let T be an object of Rep%’:ris(G), Let M (resp. M') be the
Kisin module with respect to the choice of (f(u), (7n)n>0) (resp. (f'(w), (7}, )n>0)) corresponding
to T wvia Theorem 2.7. Then we have a functorial isomorphism W(R) @s M ~ W(R) ®g' M’ of
p-modules over W(R).
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Proof. At first, in the proof of Theorem 3.21, we used the assumption (P) to apply Lemma 3.15
and to obtain (3.5). Following the arguments of [CL, Section 5|, we can obtain the same result
without (P) in the case r = 1, as follows.

By the arguments of [CL, Section 5], we can equip W(R) ®s 9 with a (unique) G-action which
satisfies the following:

e G, acts on I trivial, and
e g(l®z)—1®x € tMy(I.W(R)) for any g € G and = € IM.

(Note that their arguments do not work for » > 1.) Moreover, if we equip Tg(9M) with a G-
action by the isomorphism T (90) ~ Homyy (), (W(R) ®e M, W(R)), then we have an isomor-
phism Tg(9M) ~ T of Z,[G]-modules. Now we recall how to define a G-action on W(R) ®@s M.
Let eq,...,eq be a basis of 9 and let A € My(S) be the matrix given by ¢(er,...,eq) =
(e1,..-,eq)A. Set X 1= lim, oo Ap(A)--- e (A)gp™(A)~L. - gp(A)"LgAL, which is an element
of GLg(W(R)). We put X, = ¢(X). Then we have X, = Yg(Y)~! where Y is the matrix defined

in Section 3.3. Hence we see that the composite B, @y ) M 2 Bl ®g p*M < Bl ®z, TV
induces £,(M) C (B, ®6 "M <5 (BE, @z TV)C, which gives M[1/p] & (B, ® ¢*0)C

cris cris cris

(Bf ., @z, TV)® = Deyis(V) as (3.5). Then the same arguments as Theorem 3.21 proceeds. O

Comparison with Dieudonné crystals. In this section, we give a geometric interpretation
of Kisin modules in terms of Dieudonné crystals of p-divisible groups under our K, /K-setting,
which is well-known in the Kisin’s setting f(u) = uP. We recall that (cf. Theorem 2.7), under the
assumption v,(a1) > 1, there exists an anti-equivalence of categories between the category Modle
of free Kisin modules of height 1 and the category of p-divisible groups over the ring of integers
OK of K.

Remark 3.25. Consider the Kisin’s setting f(u) = v”. In this case Theorem 2.7 is well-studied.
Let S be the p-adic completion of the divided power envelope of the surjection W[u] — Ok given
by u +— m. Let H be a p-divisible group over Ok and 9 the free Kisin module attached to H.
Then it is known that we have a functorial isomorphism S ®g ¢*9 ~ D(H)(S). For this, see [Kis,
Theorem 2.2.7 and Proposition A.6] for p > 2 and [Kim, Proposition 4.2] for p = 2.

Combining Theorems 2.7, 3.24 and Remark 3.25, the result below follows immediately.

Theorem 3.26. Assume vy(a1) > 1. Let H be a p-divisible group over Ok and D(H) be the
Dieudonné crystal attached to H. Let M be the Kisin module attached to H. Then there ezists a
functorial isomorphism Acris @ ™M ~ D(H)(Acyis)-

3.7 Appendix

I leave here some comments from the anonymous referee, which refines some results given in this
section. His/Her idea is based on the theory of Shtuka and Breuil-Kisin-Fargues modules. It is
helpful for the reader to refer Section 4 of [BMS]. We follow notions in loc. cit.

On Theorem 3.21 and Corollary 3.22. We can replace the assumptions (P) and vp(ai) >
max{r, 1} in these results with only one assumption v,(a1) > 1. The proof is as follows.

By [BMS, Theorem 4.28], there exists an equivariant covariant functor § from the category of
finite free Breuil-Kisin-Fargues modules 90 over W (R) to the category of pairs (T, Z), where T is
a finite free Z,-module and = is a B;{R—lattice of Bqr ®z, T. Explicitly, M corresponds to the pair
(T, Z) where B ~

T= (W(FI‘ R) ®W(R) im)“":l and == B;_R ®W(R) m.
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Now let T be an object of Rep%’sris(G) and 9 a Kisin module such that Te (9) ~ T|g... Since M is
of finite E(u)-height, we see that 9 := W(R) ®,, e M is a finite free Breuil-Kisin-Fargues modules
over W(R). Let (1",Z') be the pair corresponding to 9. Since we have v,(a1) > 1 and ¢(t) is a
unit of W (Fr R), we have an isomorphism W (Fr R) Qw (g, m =5 W(Fr R) ®z, TV by Corollary
2.10. This gives f: T =5 TV. On the other hand, we see that the map Bqr ® f: Bgr ®z, T' =
Bar®z, T induces &’ = BIR@’W(R)Q?R = B(J{R®KO De,is(T'[1/p]) (in fact, it is not difficult to check
that this map coincides with the inverse of By ® &, : Bi ®k, Deris(T[1/p]) — Bl @w (r) m).
Therefore, 9 corresponds to the pair (T, Bii @Kk, Deris(T[1/p])) via §, which does not depend
on the choice of (f(u), (mp)n>0). Thus we obtain the desired result.

On Theorem 3.8 (1). We can remove the assumption (P) from the statement of the theorem.

Let 9 and 9 be objects of ModgG. Set T := T(9M) and T’ := T(9'), and let f: T — T
be a G-equivariant morphism. Since f induces a morphism from (T, Biz ®k, Dexis(T[1/p])) to
(T", Bix ® ko Deris(T'[1/p])), we obtain f: W(R) ®e MM — W (R) ®s N which commutes with .
On the other hand, we have a morphism of étale p-modules M — M’ which corresponds to f.
Since we have MM = MN(W(R) M) and M’ = M'N(W(R) e M), we obtain a map §: M — NV
of Kisin modules. To check that this induces a desired morphism §: M — M’ of (o, G’)—modules is
the same as our method (see just after Theorem 3.8).

4 Torsion representations and full faithfulness theorem

In this section, we study torsion Kisin modules and show a full faithfulness theorem for a restriction
functor on a category of torsion crystalline representations.

4.1 Statements of full faithfulness theorems

We state main results of this section. Let Rep:jfrris(G) be the category of torsion crystalline
representations of G with Hodge-Tate weights in [0,7]. Here, a torsion Z,-representation T of G
is torsion crystalline with Hodge-Tate weights in [0,r] if T is a quotient of lattices in a crystalline
Qp-representation of G with Hodge-Tate weights in [0,r]. For example, it is well-known that the

1,cris

category Rep... " (G) coincides with the category of flat representations of G. Here, a torsion Z,-

representation T of G is flat if it is of the form H(K) with some finite flat group scheme H over
the integer ring of K killed by a power of p.
In the case where r = 1, we have

Theorem 4.1. Assume the condition (P) and vy(a;) > 1 for any 1 < ¢ < p —1. Then the
restriction functor Rep™®(GQ) — Repyo, (Gy) is fully faithful.

tor

We recall that the condition (P) is that ©™(f(u)/u) is not a power of E(u) for any n > 0. For
general r, we need some more technical assumptions.

Theorem 4.2. Assume the following conditions.
(i) gu € uW(R) for any g € G.
(ii) f(m) #0 for any n > 1.
(iil) wvp(ar) > r.
Then the restriction functor Repjs™®(GQ) — Repyo,(Gy) is fully faithful if e(r —1) < p — 1.

Remark 4.3 (This is pointed out by the anonymous referee). The conditions (i) and (ii) in the
theorem just above imply vp(a;) > 1 forany 1 <i<p—1,.
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This can be checked as follows. Let jo be the minimum integer 1 < j < p such that v,(ja;) = 1.
It suffices to show jo = p. Take any g € G such that g(m) # m and let 4 be the image of u for the
projection W (R) — R. By Proposition 3.12, we have vg(ga —a) =p/(p—1) + (jo — 1)/(e(p — 1)).
On the other hand, it follows from Proposition 4.19 (1) (given later) that we have vg(ga — @) >
p/(p— 1)+ 1/e. Hence we obtain jo = p as desired.

4.2 Some remarks

We give some remarks about the statement of Theorem 4.2.

The condition e(r — 1) < p — 1. We mention the condition e(r — 1) < p — 1 in the theorem. If
we remove this condition, the full faithfulness property in the theorem does not hold as explained
in [Oz2] even for the classical case f(u) = u?; moreover, the condition e(r — 1) < p — 1 is (almost)
optimal in this case. However, we expect that such full faithfulness should be weaker for general
f(u). For example, if f(u) is chosen for cyclotomic extension (cf. [CL, Example 2.1.2]), it is not
difficult to check that the full faithfulness holds only for » = 0. Motivated by Propositions 4.18
and 4.19, the invariant j, (defined in Proposition 4.18) might say something on such difference.

The conditions (i) and (ii). Next we give some remarks about the conditions (i) and (ii) in
Theorem 4.2. Here are some examples of iterated extensions which satisfy the condition (i).

— If f(u) =P, it is clear that the conditions (i), (ii) and (iii) above are satisfied.

— If p is odd, K is a finite extension of Q, and K,/K is Galois (in this case this is abelian
(cf. Remark 7.16 of [CD])), then the condition (i) is satisfied. In fact, the G-action on W (R)
preserves G if K, /K is Galois and hence we have gu € I;W(R) NS = uS C uW (R).

We give two remarks for the condition (ii). First, it is not difficult to check that the condition (ii)
implies the condition (P). Next, for a fixed f(u), the condition (ii) is satisfied except only finitely
many choice of uniformizers 7 of K. Moreover, we have the following. (We recall that i is the
integer defined by f(u) = Y"V_; au’ with a;, # 0.)

1=t

Proposition 4.4. Put

— evp(ar) if ip =1,
07\ max{n € Z|i} <elio—)vy(ai,)+1} if ig # 1.

Then the following are equivalent.
(ii) f)(7) # 0 for any n > 1.
(ii") f™)(x) #0 for any 1 < n < ng.

Proof. Assume that there exists an integer n > 1 such that f®)(7) # 0 for any 0 < i < n — 1
and f(™(7) = 0. (In particular, we have f(u) # wP.) It suffices to show n < ng. Put ¢; =
vp(f@ (7)) for 0 < i < n —1. We have ¢y = 1/e by definition. Note that f"~(r) is a root of
XP—io 4 Zf;ilﬂ a; X%, Seeing the Newton polygon of this polynomial, it is not difficult to check

that the inequality ¢,—1 < vp(as,) holds. On the other hand, we claim that the inequality

1,
cj > 2213 (4.1)

holds for any 0 < j < n — 1. We show this claim by induction on j. The case 7 = 0 is clear.
Assume that (4.1) holds for j = m — 1 and consider the case where j = m. It follows from the
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equation f™) () = f(m=D ()P 4 Zf;zlo a; f("=1(7)* that we have

Cm > min{pcy,—1,vp(a;) +icm_1 | i =do,...,p — 1} > min{pc,—1,1 + foCm—1}
» m—1 1 i m—1 » m—1 1 m
. -k 0 N O P ko -k
Zmln{e Zzo,g—i—; Zzo} —mln{6 Zzo,eZzo}.
k=0 k=0 k=0 k=0
. -1 , , —1 . -1, .
Since we have p> 1 il — S ih > (1+140) Yopp 6 — Yoreo it = >opp it — 1 >0, we obtain

cm > e 13 )L i as desired. Therefore, we obtain

n—1

> i < eno1 < vplaiy).

k=0

1
e
The desired result immediately follows from this. O

4.3 Maximal objects

We recall that the contravariant functor Ts: Modg_ . — Repy., (Gx) is exact and faithful (cf.
Proposition 2.6). However, this is not full in general. In this section, following [CL1], we first
define a notion of mazimal Kisin modules®*. Almost the arguments given in [CL1] carry over to
the present situation. In particular, we can check that a category of maximal Kisin modules is
abelian and the functor T restricted to a category of maximal Kisin modules is fully faithful.
These play an important role in the proof of Theorems 4.1 and 4.2.

Let M be an étale p-module over Og which is killed by a power of p. Let FZ(M) be the set of
torsion Kisin modules 9t over & of height = such that 9t C M and 9M[1/u] = M. The set FE(M)

is an partially ordered set by inclusion.
Lemma 4.5. If M, M € FL(M), then we have M+ M, MNM’ € FL(M).
Proof. See the proof of Proposition 3.2.3 of [CL1]. O

Lemma 4.6. Let MM be a torsion Kisin module M over & of height r and put M = M[1/u]. If
M € FEL(M) and M C M, then we have

lengthe (D /901) < {”J “lengthe, M.
P

Here, [x] denotes the integer part of x.

Proof. See the proof of Lemma 3.2.4 of [CL1]. O

By the above lemmas, we immediately obtain

Corollary 4.7. Let M € Modo, ., and suppose that Fg (M) # (.
(1) The set FE(M) has a greatest element and a smallest element.
(2) If er <p—1, then FE(M) contains only one element.

Definition 4.8. Let 9 be a torsion Kisin module over & of height . We denote by Max" (1)
the greatest element of FZ(9M[1/u]). We say that 9 is mazimal (of height r) if M = Max" (I).

We denote by Maxg__ the full subcategory of Modg_ consisting of maximal Kisin modules.
By Corollary 4.7, we have Modg = Maxg__ if er <p—1.

We can check that all the properties given in Section 3.3 in [CL1] holds also for the present
situation by the same arguments given in loc. cit. Here we describe only a part of properties on
maximal Kisin modules that we need later.

3We can also study the theory of minimal Kisin modules by similar arguments to [CL1]. However, we do not
consider it in this paper since we do not need it for our purpose.

4As well as [CL1], results in this section can be applied also for the case “r = oo” with suitable (minor)
modifications.
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Theorem 4.9. (1) The implication M — Max"(IM) defines a covariant functor Max": Modg_ —
Modg__. Furthermore, this is left exact and Max" o Max" = Max".

(2) The category Maxg__ is abelian. Moreover, for any morphism f: 9 — M’ in Maxg __, we have
the following.

(i) The kernel ker(f) of f in the usual sense is an object of Maxg __. Furthermore, it is the
kernel of f in the abelian category Maxg__ .

(ii) The cokernel coker(f) in the usual sense is of height r and coker(f)/(u-tors) is a Kisin
module of height r. Moreover, Max" (coker(f)/(u-tors)) is the cokernel of f in the abelian
category Maxg __. If f is injective, then coker(f) is u-torsion free.

(iii) The image im(f) (resp. the coimage coim(f)) of f in the usual sense is a Kisin module of
height r. Moreover, Max" (im(f)) (resp. Max" (coim(f))) is the image (resp. the coimage) of
[ in the abelian category Maxg __ .

(3) Let 0 — M S M Lo 0 be a sequence in Maxg_ such that foa = 0. Then this sequence

is exact in the abelian category Maxg __ if and only if 0 — O'[1/u] olifd M1/ u] Pl M'[1/u] =0
18 exact as Og-modules.

(4) The functor Maxg__ — Modo, . given by M — O @c M is exact and fully faithful.

(5) The functor Te : Maxg_ — Repy,, (Gx) is exact and fully faithful.

Proof. (1) : See the proof of Propositions 3.3.2 to 3.3.4 of [CL1].
(2) : See the proof of Theorem 3.3.8 [CL1].
(3) and (4) : See the proof of Lemma 3.3.9 of [CL1].
(5) : This follows from (4) immediately.
O

Let us consider simple objects in the abelian category Max . Let S be the set of sequences
n = (ni)iez/qz of integers 0 < n; < er with smallest period d for some integer d > 0.

Definition 4.10. Let n = (n;);cz/az € S be a sequence with smallest period d. We define a
torsion Kisin module M(n) of height r, killed by p, as follows:

e as a k[u]-module, M(n) = B, c7/qz klule:;
o for all i € Z/dZ, p(e;) = u™iejtq.

We denote by S;,,, the set of sequences n = (n;);cz/qz of integers 0 < n; < min{er,p—1} with

smallest period d for some integer d except the constant sequence with value p — 1 (if necessary).

Proposition 4.11. Assume that k is algebraically closed. Then all simple objects in the abelian
category Maxg __ are of the form OM(n) with some n € S

max -’

Proof. This is a part of Propositions 3.6.8 and 3.6.12 in [CL1]. O

4.4 (p,G)-modules

Definition 4.12. A free (resp. torsion) (p,G)-module (of height r) is a triple M = (M, ¢, G)
where

1) (9, ) is a free (resp. torsion) Kisin module 97 of height r,

(1)

(2) G is a W(R)-semi-linear continuous G-action on W(R) @, & M,
(3) the G-action on W(R) ®,,e M commutes with @y gy ® @an, and
(4)

4) @*M C (W(R) ®y e M)C=.
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We denote by ModgG (resp. Modgi) the category of free (resp. torsion) (¢, G)-modules of height
7.

We define a Z,-representation T' (9M) of G for any (¢, G)-module 9 by

T(5hN) o= Homy (r) (W (R) ®p,6 M, W(R)). if 90 € Modz®,
| Homyy (g o (W(R) ®yp.e M, W(R) @z, Qp/Zy). if M € Mod .

Here, the G-action on T'(9M) is given by (g.f)(z) = g(f(g~ ' (2))) for f € T(M), g € G and
z € W(R) ®,,6 M. Note that we have a natural isomorphism of Z,[G,|-modules

0: Ts(9) =5 T(M)

given by 0(f)(a ® x) := ap(f(z)) for f € Tes(M), a € W(R) and x € M (see the proof of [CL2,
Theorem 3.1.3 (1)]). In particular, if 9 is free, then T'(9M) is a free Z,-module of rank d, where
d := rankg M. Hence we obtain a contravariant functor

T: Modg® — Repy, (G) and T Modg? — Rep(G).

For a (¢, G’)—module M, by extending the G-action on R ®p,c M (naturally obtained by the G-
action on this module) to W(R) ®, ¢ M by W (R)-semi-linearity, we obtain a (¢, G)-module; we
abuse notation by writing M for it.

Definition 4.13. Let o € W(R) \ pW(R). We define a full subcategory Mod%G(a) (resp.
Modgi () of ModgG (resp. Modgi) consisting of objects 90t with the condition that

g(1@z) - (1®z) € allW(R) @, M
for any g € G and x € 9. We put @ = a mod pW(R) € R.

Theorem 4.14. Letr,r’ >0, M € Modgfo (a) and N € Modgf(a). Then we have Hom(9, N) =
Hom(9M,N) if vr(a) > p(r —1)/(p —1).
In particular, the forgetful functor Modgfo (o) = Modg__ is fully faithful if vr(a) > p(r —

1)/(p—1).

Proof. The proof is the same as that of Proposition 4.2 in [Oz2]. Here we only explain why we need
the condition vg(&) > p(r —1)/(p — 1). Assume pDM = 0 for simplicity. Let g € G and f: M — N
be a morphism of Kisin modules. We also denote by f: W(R) ®y6 M — W(R) ®,c N the
W (R)-linear extension of f. Then it follows from the argument of the proof of Proposition 4.2 of
loc. cit. that we have fog(z) —go f(z) € m%c(s) ®gp,c N for any s > 0 and z € W(R) ®y,c M.
Here, c(s) is defined by ¢(0) = vgr(@) + p/(p — 1) and ¢(s + 1) = pe(s) — pr, that is, ¢(s) =
(vr(@) —p(r—=1)/(p—1))p* +pr/(p — 1). By the assumption vg(a) > p(r —1)/(p — 1), we have
limg_, o, ¢(s) = 0o and hence f commutes with g. O

4.5 A G-action on 9(n)

In this section, we equip a (¢, G)-module structure on M(n). In the classical setting f(u) = u?,
this has been already studied in Section 4.3 of [Oz2] by using the fact that the G-action on w is
explicitly calculated. In the present setting, the G-action on u is not so easy to understand, and
so we need more delicate arguments.

Theorem 4.15. Assume that vy(a;) > 1 for any 1 <i < p—1. Let n = (n;)iezsaz € S be a
sequence with smallest period d. Let 9M(n) be the Kisin module of height r defined in Definition
4.10. Then there exists a W(R)-semi-linear G-action on W (R) ®, s M(n) which satisfies the
following properties:
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(1) The G-action on W(R) ®,,6 M(n) commutes with pw gy @ Pop(n)-

(2) Gy acts on G ®, e M(n) trivial.

(3) For any g € G and x € M, we have g(1@x) — (1@ x) € mzp /(p=1) Ry, M(n).
Moreover, such a G-action is uniquely determined if 0 < n; < mln{er,p — 1} for any i.

Remark 4.16. For the uniqueness assertion above, we do not need (2).

Proof of Theorem 4.15. Take any (p? — 1)-st root 7o) of m = mp. We define 7(,) inductively by
d—1

the formula 7,y = wf’ HT ot for n > 1. We see vy(m(,)) = 1/(ep™(p? — 1)) and thus we have
T(n) € Ox. Now we claim the following.

W%’n) = T(n—1) mod pm(,_1)O% and W%’:;l = 1, mod pm,O%. (4.2)
We proceed a proof of this claim by induction on n.
d
Consider the case n = 1. We have 7f}, = mym " = 7r(0)7r(0) “lr P = mg) - wr;? and
Zz |, a;m;. Hence we obtain 7'('?1) = T(0) + T(0) Zi:l a;m, ~p=d), By the assump-
tion vp(al) > 1 for any ¢, we obtain wfl) = 7() mod pw(O)Of On the other hand, we have
d— d d — ; —
”ﬁd)fl = 7o) DD o P =m0 an o PP By the assump-

tion wv,(a;) > 1 for any ¢, we have (1 + Zp 1 6Ty - z)) e+ pOz. Hence we have
ﬂ(pld)_l = m mod pm O as desired.
Next we assume that (4.2) holds for n = m — 1 and consider the case n = m. By induction
d

_ d
hypothesis, we have Wf’ 1) = Tpm—1+pTm—12 for some z € Og. Thus we have w(m) = wfm )T =

T(m—1)T f’; H)Tm = Tm-1)(Tm—1 + P _12)7,F = 7T(m @+ apr w7t TP ).
By the assumption vp(a;) > 1 for any ¢, we obtain 7r (m) = T(m—1) mod pr(;,—1)O%. On the
other hand, we have W(m;1 = (ij;ll)ﬂ'_l)pd_l = (Tm-1 + pﬂ'm,lm)pdflﬂ';l”dﬂm = T ((Tm—1 +
Prm_12)m PP = (1 + Zp 1 @iTm D 4 pry _mP2)P" . By the assumption vy(a;) > 1
for any 4, we have (1 + Zz 1 QiTm ) + p71'm_177;}’913)17[171 € 1+ pOgx. Therefore, we obtain
W?;;l = T, mod pm,,Of. This finishes the proof of (4.2).

By (4.2), we can define an element 7; of R by 7, := (7(,) mod pOx)n>0. By definition we
have ﬂgd_l = 7. On the other hand, for any g € G, there exists a unique a4 € ]F;d such that
977(0)”(8 = [ay]. Here, [-] stands for the Teichmiiller lift. We note that we have a cocycle condition
agh = agq - gap, for any g,h € G. Put z4 = a;lgﬂdﬂgl € R*. By the cocycle condition above, we
can define an R-semi-linear G-action on R ®, e M(n) = @icz/azR(l ® €;) by

9(1®61)—x (I®e;)

for any g € G and i € Z/dZ. Here, m; = Z;‘l=1 p’n;_;. In the rest of this proof, we show that this
G-action satisfies the assertions (1), (2) and (3) in the statement of this lemma. The assertion (1)
can be checked by a direct computation without difficulty. We check (2) and (3) below.

We show (2). Let g € Gy. It suffices to show that gm,m;' coincides with a,. The case
(p,d) = (2,1) is clear. Thus we may assume (p,d) # (2,1). Put b, := gmym, ', which is an element
of F;d. Seeing the 0-th components of both sides of g7, = by7,, we have gy = [bg]m(9) mod pOx
Thus we have [a4]m) = [bg]m(o) mod pOx, and this induces [a,] — [by] € pT((O)O By the
assumption (p,d) # (2,1), we have ’Up(pﬂ'(_ob = 1—1/(e(p? — 1)) > 0, and hence we obtain
[ag] — [by] € pW (k). Therefore, we have a, = b,y. This shows (2).

We show (3). We may assume g ¢ Gr. At first we show

> 0%
9g(1®e)—(1®e) emyp Ry e Mn) (4.3)
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for any g € G and i € Z/dZ. Since m; is divided by p, it suffices to show x4, — 1 € m;p/(p_l) Ryp,&
Mi(n). Note that the n-th component of a;lgﬂd —my s [a;pfn]gw(n) — T(n) mod pOz. Hence we
have

vp(zg — 1) = vgr(a, 'gry — 74) — vr(Ty)

. —pn 1
= Jm pup(lag” Jgm) = mon) = Cor
= lim p"(vp(lag” " 1gmn) = 7o) = vp (7))
. n —p=11 9T (n)
— P _
= nll)ngop Up ([ag ] o 1) .

Hence it is enough to show that v, ([ag_pﬂL]gW(n)?T(;l) - 1) > p/(p™(p — 1)) for n large enough.
More precisely, we claim the following: Let N > 1 be the integer such that gny_1 = mny_1 and
grn # mn. (Such N exists by the assumption g ¢ Gr.) Then we have

N
—p~19T(n p
o (15 1) 2 4

for n large enough. We show this inequality. Put ¢,, = [a;p_"]gw(n)w(;l) for n > 0. Since a?’ = ag,

9
we have
pi1 1 pi—1 1
—n. a9 _1)9T _—(n— T(n— n
e i —1=<[ag“ e ”) (gw) -
an 1)7@1 T(n-1) Tn

—1 -1 -1
a1 (gmy a-1 97 9mn
() @ oy (I EALON
D (I) =@ e (22) 4 (22)
In particular, we have v,(c, — 1) > min{v,(c,—1 — 1),v,(gm,7,, ' — 1)}. Repeating this argument,
we obtain v,(c, — 1) > min{v,(co — 1), vp(gmmy* = 1),...,v,(gmum, ' — 1)}. Since ¢ — 1 = 0,
we have vy, (c, — 1) > min{v,(gmm; ' — 1),...,v,(gm,m, " — 1)}. On the other hand, we know

vr(gmam,t—1) = pV/(p"(p—1)) for any n > N by the proof of Proposition 3.12. Hence, to show
(4.4), it suffices to show v, (gm,m,* — 1) > 0 for any n > 1. More precisely, we show

gTn p
o (I 1) > — P (4.5)
: < T ) p"(p—1)
for any n > 1. We note that z,, := gm,m, ' —1isaroot of Y 7_; aim:(p_i)(XJrl)ifgwn_lﬂ;p. Put
bj = fzj (;',)aﬂr;(p_z) € pOg for any 1 < j < p—1. Then we see the equality 7, aﬂr;(p_z) (X+
1)t = XP—I—Z?;} bj X7 +m,_17,F. Hence x,, for n > 2 (resp. n = 1) is a root of Xp—&-zg;; b X7+
(g7pn_1 — Tp_1)m, P (resp. XP~1 + Zf;i b; X7~1). Now (4.5))follows by induction on n and argu-
ments of Newton polygons. Consequently we finish the proof of (4.3).
To finish the proof of (3), we need to show

gl®z)—(1®x) e mi”ple Ry, M(n) (4.6)

for any z € M(n). Writing x = Zle a;e; with some a; € kfu], we have g(1®z) — (1 ® z) =
Y (9(1 ® aier) — (1® aies)) = S ((9ai — a:)Pg(1 @ €;)) + al(g(1 @ ;) — (1 @ ¢;))). By
(4.3), it suffices to show ga; — a; € m%p/(p_l) but this immediately follows from Proposition 3.12.
Consequently, we obtained the proof of (3).

Finally, we show that an R-semi-linear G-action on R ®, e M (n) satisfying (1) and (3) is
uniquely determined when 0 < n; < min{er,p — 1} for any i. Assume that two G-actions
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p1,p2: G = Endr(R ®,,6 M(n)) on R ®, e M(n) satisfy (1) and (3), and put g.(z) = p1(g)(z)
and gy(z) = p2(g)(z) for any g € G and © € R®, g M(n). By (3), we have g, (1®e;) —gs(1®e;) €
méc(o) ®@gp,c M(n) where ¢(0) = p?/(p — 1). Thus, by (1), we obtain

g (g, (1@ eip1) — (1@ ei1)) = p(g.(1® ¢;) — (1@ e;)) € mp"® @, 6 M(n).

Furthermore, we have pe(0) — pn; /e > pe(0) — p(p — 1) by the assumption 0 < n; < min{er,p— 1}.
Hence we obtain ¢,(1 ® €;41) — gs(1 ® €;41) € m%c(l) ®Rp,e M(n) where ¢(1) = pc(0) — p(p — 1).
Repeating this argument, we obtain g.(1 ® ej+s) — g4(1 @ €;45) € m%c(s) Rp,e M(n) for any
s > 0 where ¢(s) = pc(s — 1) —p(p — 1) = p*1/(p — 1) + p. Since lims_, c(s) = oo, we obtain
g« (1 ®e;) = gs(1 ®@e;) for any 7 as desired. O

4.6 Proofs of Theorems 4.1 and 4.2

In this section we prove Theorems 4.1 and 4.2. We put @ = ¢ mod pW (R) for any a € W(R). It is
known (cf. Example 3.3.2 of [CL]) that there exists ' € W(R) \ pW (R) such that ¢o(t') = E(u)t'.
By Lemma 2.3.1 of loc. cit., p(t') is a generator of I (R).

Remark 4.17. Under the condition v,(a1) > 1, we defined t € W(R) \ pW(R) in Section 2.2
such that ¢(t) = peE(u)t with some g € &*. Then we have t/t' € W(R)™ since both ¢(t) and
@(t) are generators of a principal ideal TV (R).

We start with two estimations of the ideal ¢(gu — u)BL, N W (R) of W(R) for g € G to study
its reduction modulo p. The first proposition gives a “weak” estimation, however, it does not need
any assumption. The second one gives a “strong” estimation although we need some technical
assumptions.

Proposition 4.18. Let jo be the minimum integer 1 < j < p such that vy(ja;) = 1. Put h =0
(resp. h=1) if e < jo — 1 (resp. e > jo — 1).
(1) Let g € G\ G and N > 1 the integer such that gny_1 = mny_1 and gnn # . Then

(i) gu—u= N (t)v, for some v, € W(R).
(ii) ¢(vg) = vqwy for some w, € W(R).
(ili) @(gu —u)B, N W(R) C vywh INW(R).

(2) The image of p(gu —u)BE. N W(R) under the projection W(R) — R is contained in mlzf for
any g € G. Here,
p Jo—1 4
c=——+ p".
p—1 elp-1)

Proposition 4.19. Assume the following conditions.
(i) gu € uW(R) for any g € G.
(ii) f)(7) #0 for any n > 1.

Then we have the following.

(1) gu—u € u![l]W(R) for any g € G.

(2) ¢(gu — u)Bo NW(R) C o(u) MW (R) for any g € G.

(3) The image of p(gu — u)Bs N W(R) under the projection W(R) — R is contained in m%f for

any g € G. Here,

CZL—&—E.
p—1 e

For proofs of these propositions, we use
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Lemma 4.20. (1) Let v € W(R) such that vg(v) < 1. If v € BL,  satisfies ve € W(R), then we
have © € W(R).

(2) Assume that vy(a;) > 1 for any 1 < i < p—1. Put fo(u) = f(u)/u. If x € B, satisfies
fo(uw)x € W(R), then we have x € W(R).

Proof. (1) This is a generalization of Lemma 3.2.2 of [Li3] but almost the same proof can be applied
to our setting. We only give one remark that E(u) is contained in vW (R)+pW (R) by the condition
vr(9) <1 =wvgr(E(u)), and thus we can write E(u)*™! = p'*1b; + vw; by some b;, w; € W (R).

(2) The proof here is given by the anonymous referee. Again we modify the proof of Lemma
3.2.2 of [Li3]. We may assume z = > 2, aj(E(u)?/p)! with a; € W(R) Put y = folu)z €
W(R). For any i > 0, we have p'y = fo(u)Z; + Z where Z; := 3% a;p" 7 E(u)? and %; :=
p' fo(u) > i aj(E(u)?/p). Note that we have Z; € W(R) and z; € FilP* DWW (R). Since
FilPUrD W (R) is generated by E(u)P(+) | we have %, = E(u)Pt+1 §; for some 8; € W(R). By the
assumption v, (a;) > 1 for any 1 < i < p—1, we have E(u)? = fo(u)u®?"PT! mod p?, which implies
E(u)Pt+D) € p?+D& + fo(u)S. Hence we have p'y = fo(u)z} + p?+Hw! for some o, y, € W(R).
Since p does not divide fo(u), we see that p’ divides 2 and thus we obtain y = fo(u)z ) +p 2w,
for some x(;y, y;) € W(R). This gives y € fo(u)W (R), which shows x € W(R) as desired. O

Proof of Proposition 4.18. (1) By definition of N, we have ¢~ N=Y(gu — u) € IMNW(R) and
0 N(gu—u) ¢ Fil'W(R) (cf. Lemma 2.1.3 of [CL]). By the condition ¢~ V=1 (gu—u) € TNW(R)
and the fact that p(t') is a generator of I'''W (R), we have gu —u = ¢ (t')v, for some v, € W(R),
which shows (1)-(i). Taking ¢ to both sides of this equality, we have

plgu—u) = ") p(vg) = N ()N (B(u))p(vy)- (4.7)
On the other hand, the equation ¢(u) = f(u) implies
plgu —u) = (gu — uiy = p™ ({ )vgi, (4.8)
where @, = 7 ai(gu’ — ui)/(gu — u) € W(R). By (4.7) and (4.8), we obtain

Vgly = gpN(E(u))go(vg). (4.9)

Hence we have ¢~V (v,)p N (i0,) € Fil'W(R). Here we note that ¢~ (v,) is not contained in
Fil' W(R) since Yo~V (vy) = ¢ N (gu — u) ¢ Fil'W(R). Thus we obtain ¢~V (@,) € Fil'W(R).
Since E(u) is a generator of Fil'W(R) (cf. Lemma 2.1.3 of [CL]), we obtain @, = ¢V (E(u))w, for
some wy; € W(R). By (4.9), we obtain ¢(v,) = vyw,, which shows (1)-(ii).

Finally we show (1)-(iii). Take any = = ¢(gu — u)y € p(gu — u)BL,. N W (R). We have

cris

N+1(t/) N+1(t/)

x=p(gu—u)y=¢p e(vg)y = VgWqly
N(EW)e™ (¢ )vgwgy = ™ (E(u) o™ (E(w)e"™ ! (¥ )vgwyy
= N (EW) - p(BW) - B v,y

Il
©

where z 1= N (E(u)) - @(E(u))w;_hy € BJ,.. Note that we have vg(F(u)) = evg(d) = 1. By
the equality p(t') = E(u)t', we have vg(t') = 1/(p — 1) < 1. Tt follows from Proposition 3.12
and the equality gu — u = ¢™ (¥)v, that we have vg(9,) = (jo — 1)/(e(p — 1)) < 1. Furthermore,
by the equality ¢(vy) = vowgy, we also see vR(zD;‘) = h(jo — 1)/e < 1. Hence it follows from

Lemma 4.20 and E(u)tvywl'z = x € W(R) that we have z € W(R). Therefore, we obtain
z = p()vgwhz € vawh INW (R) as desired.

(2) Since vr(t') = 1/(p — 1), vr(9,) = (jo — 1)/(e(p — 1)) and UR(’IDZ) = h(jo — 1)/e, the result
follows from (1)-(iii) immediately. O
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Proof of Proposition 4.19. The assertion (3) follows from (2) immediately, and thus it suffices to
show (1) and (2). By the assumption (i), we have gu — u = wv, for some v, € W(R). By
Lemma 2.3.2 of [CL] and the assumption (ii), we see v, € INW(R), which shows (1). Take any
z = p(gu —u)y € p(gu — u) By N W(R). Writing v, = o(t')vy with some v € W(R), we have

z = p(uvg)y = (u)p” (¥ )o(vy)y = fo(u) - u- E(u) -t -z

where 2 = @(E(u))p(vg,)y, which is an element of B,. Note that we have vg(7) = 1/e < 1,
vr(t') =1/(p—1) < 1. Hence it follows from Lemma 4.20 that we have z € W(R). Therefore, we
obtain z = @(u)p(t)z € p(u) MW (R). O

The above propositions allow us to show the existence of “good” (p, G)-modules which corre-
spond to objects of Rep;ar =~ (G). For the case r = 1, we have

tor

Corollary 4.21. Assume vp(a1) > 1 and the condition (P). Let jo be the minimum integer
1 < j < p such that vy(jaj) = 1. Put h =0 (resp. h = 1) if e < jo — 1 (resp. e > jo — 1). Let
o € W(R)~pW (R) such that vg(a) < (jo—1)p"/(e(p—1)). Let T be an object of Rep.S™(G) such
that pT = 0. Then there exists a (@, G)-module M € Modgi () killed by p such that T ~ T(N).

Proof. Take an exact sequence 0 — L1 — Ly — T — 0 of representations of G, where L1 C Lo
are G-stable Z,-lattices in a crystalline Q,-representation of G with Hodge-Tate weights in [0, 1].
Take a morphism i: £, — £; in ModgG’Cris which corresponds to the injection L; < Lo via
Theorem 3.7. We regard £, and £, as (¢, G)-modules by a canonical way. It is not difficult to
check that the map £o — £; of underlying Kisin modules of i is injective, and thus we may regard
f}g as a sub (¢, G)-module of 21. Put M = £,/£5. Tt follows from Proposition 2.2 that 9 is an
object of Modlgoo. Furthermore, we can naturally equip 9 with a (¢, G)-module structure; we

denote it by M. By construction, we have an exact sequence 0 — £y & — M — 0 of (¢, G)-
modules. It follows from (the proof of) Lemma 3.1.4 of [CL2] that this exact sequence induces
0 — Ly — Ly —» T — 0. We note that 9M[1/u] is an étale p-module corresponding to T|¢, , and
thus 90[1/u] is killed by p (see the isomorphism (3.2.1) of [CL]). In particular, M is killed by p.

Combining this with the fact that £, and £, are objects of Modgc’cris, it follows from Proposition

4.18 that 91 is an object of M € Modgfo (). O
Next we consider general r.
Corollary 4.22. Assume the following conditions.
(i) gu € uW(R) for any g € G.
(ii) f)(7) # 0 for any n > 1.
(iii) vp(a1) > max{r,1}.

Let T be an object of Rep"*(G). Then there exists a (@, G)-module 9 € Modgi (p(u)) such that
T ~T(M).
Moreover, we have the following: Suppose that we have an exact sequence

(#) 0L > Ly—T—0

of representations of G, where Ly C Lo are G-stable Zy-lattices in a crystalline Q,-representation of
G with Hodge-Tate weights in [0,r]. Then there exist £1,£s € ModgG(go(u)), M e Modgi (p(u))
and an eract sequence R A A

(*) 0%224)214)93?4)0

of (v, G)-modules which induces (#).
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Proof. The proof is almost the same as that of Corollary 4.21. We only give a remark that )31 and
£, in the present situation are objects of Modr’ (¢(u)) by Proposition 4.19 (2), and thus 9t is an
object of Modgi( (u)).

O
Now we are ready to prove Theorems 4.1 and 4.2. We essentially follow the method of [0z2].
Proof of Theorem 4.2. The goal is to show the equality
Homg(T,T") = Homg, (T,T") (4.10)

for any T, T’ € Rep:ocrns(G)'

STEP 1. We reduce a proof to the case where k = k. Assume that the theorem holds when
k = k and consider general cases. We denote by L and H the completion of the maximal unramified
extension of K and the absolute Galois group of L, respectively. We identify the inertia subgroup
I of G with H. We set L :=J,,o L(m,) and denote by H, the absolute Galois group of L,. We
remark that L, is an f-iterate extension of L since 7 is a uniformizer of L.

Let f: T — T’ be a Gr-equivalent homomorphism. Since T'|y and T”|y are objects of

Rep ™ (H) and f commutes with H, the assumption above implies that f is H-equivalent.

Since the extension K /K is a totally ramified pro-p-extension, we know that H and G, topolog-
ically generates G. Hence f commutes with G.

STEP 2. We reduce a proof to the case where T is irreducible. Assume that the equality (4.10)
holds when T is irreducible and consider general cases. Since the category ReplS™5(G) is stable
under subquotients and direct sums in Rep,.,(G) (cf. Lemma 4.19 of [0z2]), it is an exact category
in the sense of Quillen [Qu, Section 2]. Hence short exact sequences in Repj:<™ (@) give rise to
exact sequences of Hom’s and Ext!’s in the usual way. Thus a standard dévissage argument (with

respect to a Jordan-Holder sequence of T') reduces a proof to the case where T is irreducible.

STEP 3. By Steps 1 and 2, it suffices to show the equality (4.10) under the conditions that
k =k and T is irreducible. Now we assume these conditions.

First we claim that T'|q,_ is irreducible. Let W be a Gr-stable submodule of T'. Since T is
irreducible, the wild inertia subgroup IV of G acts on T trivial. In particular, the IV-action on T
preserves W. Since G and I topologically generates GG, the irreducibility of 7" implies that W is
0 or T. Thus the claim follows.

By Corollary 4.22, there exist (i, G)-modules 9, M’ € Modgi(go(u)) such that T ~ T'(9M)
and T’ ~ T(9M'). Then we have T|g. ~ Te(M) ~ Te(Max"(9M)). By Theorem 4.9 (5) and
the condition that T|¢, is irreducible, we know that Max" (90) is a simple object in the abelian
category Maxg_ . By Proposition 4.11 and the assumption k = k, there exists an sequence n €
S’ .. such that M(n) ~ Max”(M). We note that the ideal p(u)I™MW(R) of W(R) is generated
by @(u)p(t) and vr(p(u)e(t) mod p) = p/e +p/(p—1) < p+p/(p—1) = p*/(p—1). It
follows from Theorem 4.15 that there exists a (unique) (@, G)-module 9 (n) € Moer( (u))

with underlying Kisin module 9t(n). Then we have an isomorphism T'|¢, ~ T(M(n )la,. By this
isomorphism, we know that T'(90%(n )la, is irreducible since T'|q, 15 irreducible. Hence T'(90(n))
is irreducible as a representation of G. In partlcular T and T(9M(n)) are tame. Since G and

I'" topologically generates G, the isomorphism 7|, T(9M(n )la, is in fact G-equivalent. We
consider the following commutative diagram.

Home (T, T")C Homg, (T, T")

K N

Hom(DjT’, ifﬂ(n)) — Homg (M, M(n)) Meax Homg ,,(Max" (9V'), M(n))
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Here, we recall that we have vg(p(@)) = p/e > p(r—1)/(p—1). Hence the first arrow in the bottom
line, obtained by forgetting G-actions, is bijective by Theorem 4.14. Since t(n) is maximal, it is
not difficult to check that the second arrow in the bottom line is also bijective. Furthermore, the
right vertical arrow is also bijective by Theorem 4.9 (5). Therefore, the top horizontal arrow must
be bijective as desired. This is the end of the proof of Theorem 4.2. O

Proof of Theorem 4.1. The goal is to show the equality
Homg(T,T") = Homg, (T, T") (4.11)

for any T, T' € Rep;S™®(G). The arguments in Steps 1 and 2 just above proceed also for the
present situation. Thus it suffices to show the equality (4.11) under the conditions that k = k and
T is irreducible. Put T = ker(T” — T"; « — pz). This is an object of Repi:™ (@) by Lemma 4.19
of [0z2]. Since pT = 0, we know that any homomorphism 7" — 7" of Z,-modules have values in
T". Thus, by replacing T" with 7", we may assume pT’ = 0.

Take any o € W(R) \ pW (R) such that 0 < vg(&) < (jo —1)/(e(p — 1)). Since T' and T” are
killed by p, there exist (¢, G)-modules 90, M’ € Modgi () killed by p such that T~ T'(9) and

T ~ T(E)AJI’ ) by Corollary 4.21. Now we can use the same arguments of the third paragraph of Step
3. O
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