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Abstract

We introduce a notion of highly Kummer-faithful fields and study its relationship with
the notion of Kummer-faithful fields. We also give some examples of highly Kummer-faithful
fields. For example, if k is a number field of finite degree over Q, g is an integer > 0 and
m = (mp)p is a family of non-negative integers, where p ranges over all prime numbers, then
the extension field kg,m obtained by adjoining to k all coordinates of the elements of the pmp -
torsion subgroup A[pmp ] of A for all semi-abelian varieties A over k of dimension at most g
and all prime numbers p, is highly Kummer-faithful.

1 Introduction

The notion of a Kummer-faithful field, defined by Mochizuki [Mo], plays an important role in
anabelian geometry; it is defined by the non-divisibility of the Mordell-Weil groups of semi-abelian
varieties over the field (see Definition 2.2), so that Kummer theory works effectively for the purpose
of reconstructing geometric objects over such a field. Recently, some versions of the Grothendieck
Conjecture in anabeian geometry are being generalized from ones over sub-p-adic fields to ones
over Kummer-faithful fields (see, e.g., [Ho]). Note that a sub-p-adic field (for a prime number
p) is Kummer-faithful ([Mo, Remark 1.5.4]). In particular, finite extensions of Q(t1, . . . , tr) and
Qp(t1, . . . , tr) are Kummer-faithful. On the other hand, many of the infinite algebraic extensions
of Q are not Kummer-faithful. For example, the field Q(µp∞) generated over Q by all p-power
roots of unity is not Kummer-faithful. In general, it is not easy to determine whether a given field
is Kummer-faithful or not. In this paper, we give in §2 a sufficient condition for a Galois extension
of a finite number field to be Kummer-faithful in terms of ramification theory (Theorem 2.12 and
Corollary 2.16), and in 3 construct in §3 examples of Kummer-faithful fields of infinite degree over
Q which are not sub-p-adic for any prime number p. Some similar examples have already been
studied in Ohtani [Oh]; we give a more systematic treatment in this paper.

Furthermore, we define a closely related notion “highly Kummer-faithful field” (Definition
2.6) and study its relation to Kummer-faithfulness. High Kummer-faithfulness is defined by the
vanishing of the coinvariant spaces of the étale cohomology groups (with Tate twists) of proper
smooth varieties over the field. Precisely speaking, we say that a perfect field K of characteristic
pK is highly Kummer-faithful if, for every finite extension L of K and every proper smooth variety
X over L, it holds that

Hi
ét(XK ,Qℓ(r))GL

= 0 for any prime number ` ̸= pK and any i, r with i ̸= 2r.

Although not a priori from the definition, it follows that, under a certain condition, high Kummer-
faithfulness implies Kummer-faithfulness (Proposition 2.9). The above mentioned sufficient con-
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dition in §2 applies in fact also to high Kummer-faithfulness, and our examples of fields in §3 are
highly Kummer-faithful.

Notation. A number field is a finite extension of the field Q of rational numbers. A p-adic field
is a finite extension of the field Qp of p-adic numbers. For any field F , we fix a separable closure
F of F and we denote by GF the absolute Galois group Gal(F/F ) of F . If a group G acts on a
vector space H, we denote by HG (resp. HG) the invariants (resp. coinvariants) of H by G; thus
HG (resp. HG) is the maximal subspace (resp. quotient space) of H on which G acts trivially.

2 Highly Kummer-faithful fields

In this section, we recall the definition of Kummer-faithful fields (cf. [Mo, Def. 1.5], [Ho, Def.
1.2]) and define a notion of highly Kummer-faithful fields. We also study the relationship between
Kummer-faithfulness, high Kummer-faithfulness and some other properties.

2.1 Definitions

Definition 2.1. Let M be a Z-module and ` a prime number. We say that P ∈ M is divisible
(resp. `-divisible) if, for any integer n > 0, there exists Q ∈M such that P = nQ (resp. P = `nQ).
We denote by Mdiv (resp. Mℓ-div) the set of divisible (resp. `-divisible) elements of M , that is,

Mdiv =
∩
n>0

nM, Mℓ-div =
∩
n>0

`nM.

Note that P ∈ M is divisible if and only if it is `-divisible for all primes `; we have Mdiv =∩
ℓMℓ-div.

Definition 2.2. A perfect field K is Kummer-faithful if, for every finite extension L of K and
every semi-abelian variety A over L, it holds that

A(L)div = 0.

The facts below immediately follow from the definition of Kummer-faithfulness.

(1) If a perfect field K is Kummer-faithful, then so is any subfield of K.

(2) Let K ′ be a finite extension of a perfect field K. Then K is Kummer-faithful if and only if
K ′ is Kummer-faithful.

Note that a perfect field K is Kummer-faithful if and only if A(K)div = 0 for every semi-abelian
variety A over K (cf. [Mo, Rem. 1.5.2]).

It is also shown in [Mo, Rem. 1.5.4] that any sub-p-adic field is Kummer-faithful. Here, a field
k is sub-p-adic if there exists a prime number p and a finitely generated field extension L of Qp

such that k is isomorphic to a subfield of L. In particular, a number field is Kummer-faithful.

Proposition 2.3. A perfect field K is Kummer-faithful if and only if Gm(L)div = 0 for any finite
extension L of K and A(K)div = 0 for any abelian variety A over K.

Proof. It suffices to show the “if” direction. Let B be a semi-abelian variety over K; thus B is
an extension of an abelian variety A by a torus T . It is enough to show B(K)div = 0 (see just
after Definition 2.2). Assume that there exists a non-zero divisible element P ∈ B(K)div. For any
integer n > 0, let Xn be the set of P ′ ∈ B(K) such that nP ′ = P . The set Xn is a non-empty
finite set. Furthermore, {Xn}n forms a projective system with transition maps fn,m : Xm → Xn

given by fn,m(P ′) = (m/n)P ′ for n | m. Then the projective limit lim←−n
Xn is non-empty by [Bo,

Chap. 1, §9.6, Prop. 8]. Take any element (Pn)n ∈ lim←−n
Xn. Then the image P̄n of Pn in A(K)

2



is divisible. Since A(K)div = 0 by assumption, P̄n is zero for any n. Therefore, P1 is a non-zero
divisible element of T (K). But this is a contradiction, since T (K)div = 0. Indeed, if the torus T
splits by a finite extension L/K, then T (K) is identified a subgroup of Gm(L)

⊕d with d = dim(T )
and hence T (K)div = 0.

For a semi-abelian variety A over a field k and a prime number `, we set Tℓ(A) := lim←−n
A[`n] and

Vℓ(A) := Qℓ ⊗Zℓ
Tℓ(A), where the transition map A[`n+1]→ A[`n] is given by the multiplication-

by-`. We call Tℓ(A) and Vℓ(A) respectively the `-adic and rational `-adic Tate modules of A. It is
well-known that Tℓ(A) is a free Zℓ-module of finite rank and Vℓ(A) is a finite dimensional Qℓ-vector
space. The Galois group Gk acts on Tℓ(A) and Vℓ(A) continuously.

Proposition 2.4. Let A be a semi-abelian variety over a field k and K an algebraic extension of
k.
(1) For any prime number `, the following conditions are equivalent.

(i) (A(K)[`∞])ℓ-div is zero.

(ii) A(K)[`∞] is finite.

(iii) Vℓ(A)
GK = 0.

(2) Consider the following conditions.

(a) A(K)div is zero.

(b) (A(K)tor)div is zero.

(c) A(K)[`∞] is finite for any prime number `.

Then we have (a)⇒ (b)⇔ (c). If k is Kummer-faithful and the extension K/k is Galois, then we
have (a)⇔ (b)⇔ (c).

Remark 2.5. For the implication (b) ⇒ (a), the assumption that K/k be Galois is essential, as
the following example shows: let k = Q and fix an integer a > 1. Let K be the extension of k
obtained by adjoining the real nth roots of a for all integers n ≥ 1. Then Gm(K)div ̸= 0, whereas
(Gm(K)tor)div = 0.

Proof. (1) The equivalence of (ii) and (iii) follows immediately from the definition of Tate modules.
We also have a natural isomorphism Tℓ(A)

GK ≃ HomZ(Z[1/`]/Z, A(K)[`∞]), which implies the
equivalence of (i) and (iii).
(2) The implication (a) ⇒ (b) is clear. The implication (b) ⇒ (c) follows from the natural iso-
morphism

∏
ℓ Tℓ(A)

GK ≃ HomZ(Q/Z, A(K)tor), where ` ranges over the prime numbers. To show
(c)⇒ (b), assume that a non-zero divisible element P of A(K)tor exists. Let N be the order of P
and take a prime divisor ` of N . Then we see that (`−1N)P is a non-zero `-divisible element of
A(K)[`∞]. By (1), we have that A(K)[`∞] is infinite. This shows (c)⇒ (b).

Now we show (b) ⇒ (a) under the assumption that k is Kummer-faithful and K/k is Galois.
Assume that there exists a non-zero divisible element P of A(K). For any integer n > 0, let Xn

be the set of P ′ ∈ A(K) such that P = nP ′. As is explained in the proof of Proposition 2.3, we
know that {Xn}n forms a projective system and its projective limit lim←−n

Xn is non-empty. Take

an element (Pn)n of lim←−n
Xn. Let k

′/k be a finite subextension of K/k such that P ∈ A(k′). Since
k is Kummer-faithful, k′ is also Kummer-faithful. Hence we have Pn0

/∈ A(k′) for some n0. Take
σ0 ∈ Gk′ such that σ0(Pn0

) − Pn0
̸= 0 and set Qn := σ0(Pn) − Pn for n > 0. Then Qn0

̸= 0 and
nQnn0

= Qn0
for any n. Since the extension K/k is Galois, we have Qn ∈ A(K)[n] for any n.

Hence Qn0
is a non-zero divisible element of A(K)tor, which shows (b)⇒ (a).
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Definition 2.6. Let K be a perfect field with characteristic pK ≥ 0.
(1) We say that K is quasi-highly Kummer-faithful if, for every finite extension L of K and every
proper smooth variety X over L, it holds that

(∗) Hi
ét(XK ,Qℓ)GL

= 0 for any prime number ` ̸= pK and any 0 < i ≤ 2 dimX.

(2) We say that K is highly Kummer-faithful if, for every finite extension L of K and every proper
smooth variety X over L, it holds that

(]) Hi
ét(XK ,Qℓ(r))GL

= 0 for any prime number ` ̸= pK and any i, r with i ̸= 2r.

We have the following implication:

K is highly Kummer-faithful⇒ K is quasi-highly Kummer-faithful.

Note that the condition (]) is equivalent to the condition

(])′ Hi
ét(XK ,Qℓ(r))

GL = 0 where ` ̸= pK is any prime number and i ̸= 2r.

Indeed, we have isomorphisms (Hi
ét(XK ,Qℓ(r))GL

)∨ ≃ (Hi
ét(XK ,Qℓ(r))

∨)GL ≃ H2g−i
ét (XK ,Qℓ(g−

r))GL , where g = dimX.
We also note that the facts below immediately follow from the definition of high Kummer-

faithfulness (resp. quasi-high Kummer-faithfulness).

(1) If K is highly Kummer-faithful (resp. quasi-highly Kummer-faithful), then so is any subfield
of K.

(2) Let K ′ be a finite extension of a perfect field K. Then K is highly Kummer-faithful (resp.
quasi-highly Kummer-faithful) if and only if K ′ is highly Kummer-faithful (resp. quasi-highly
Kummer-faithful).

Remark 2.7. In view of the fact that Kummer theory deals with abelian extensions of degree
prime to the characteristic of the base field, we impose the condition ` ̸= pK in the above definition
of (quasi-)high Kummer-faithfulness, though there may be room for discussion whether we should
really do so.

Remark 2.8. We should note that Kummer-faithfulness and (quasi-)high Kummer-faithfulness
are “local notion” in coefficients. In fact, it is not difficult to check that a perfect field K is
Kummer-faithful if and only if K is `-Kummer-faithful for any prime number `. Here, K is `-
Kummer-faithful if, for every finite extension L of K and every semi-abelian variety A over L, it
holds that A(L)ℓ-div = 0. If we define the notion of high `-Kummer-faithfulness by the obvious
manner, then K is highly Kummer-faithful if and only if K is highly `-Kummer-faithful for any
prime number `.

Proposition 2.9. Let K be a Galois extension of a Kummer-faithful field. If K is quasi-highly
Kummer-faithful, then K is Kummer-faithful.

Proof. Note that, for any finite extension L of K, any prime number ` and any g-dimensional
abelian variety A over L, there exist GL-equivalent isomorphisms Qℓ(−1) ≃ H2

ét(P1
K
,Qℓ) and

Vℓ(A) ≃ (H1
ét(AK ,Qℓ))

∨. Hence the result follows from Propositions 2.4 and 2.3.

Proposition 2.10. If A is a semi-abelian variety over a sub p-adic field K, then A(K)tor is finite.

Proof. We may assume that K is a finite extension of K0 = Qp(t1, . . . , tr) where t1, .., tr are
transcendental basis of K over Qp. The torsion part of K-rational points of any torus over K
is finite. Thus it suffices to prove the proposition in the case where A is an abelian variety. Let
A0 := ResK/K0

(A) be the Weil restriction. Then A0 is an abelian variety over K0 and we have
A0(K0) = A(K). By the Lang-Néron theorem ([Co], [LN]), there exist an abelian variety A′

0 over
Qp and an injection ι : A′

0(Qp) ↪→ A0(K0) with the property that A0(K0)/ι(A
′
0(Qp)) is a finitely

generated abelian group. Since A′
0(Qp)tor is finite (cf. [Ma]), we obtain that A0(K0)tor = A(K)tor

is finite.
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Summary. Let K be a Galois extension of a Kummer-faithful field. For such K, we consider the
following conditions:

(Subp) K is sub p-adic.

(Tor)fin. For any finite extension L of K and any semi-abelian variety A over L, it holds that
A(L)tor is finite.

(Tor)loc.fin. For any finite extension L of K, any semi-abelian variety A over L and any prime
number `, it holds that A(L)[`∞] is finite.

(KF) K is Kummer-faithful.

(QHKF) K is quasi-highly Kummer-faithful.

(HKF) K is highly Kummer-faithful.

Then we have the following diagram of logical relations:

(KF) ks
Prop.2.4 +3 (Tor)loc.fin.

(HKF) +3 (QHKF)

Prop.2.9

K S

(Subp)

[Mo]
ai LLLLLLLLL

LLLLLLLLL
Prop.2.10+3 (Tor)fin.

trivial

KS

It seems natural to consider the relationship between sub p-adic fields and (quasi-)highly
Kummer-faithful fields. First, we note that any sub p-adic field is not highly Kummer faithful.
To see this, it is enough to show that Qp is not highly Kummer faithful. Let E be a Tate curve
over Qp. Since we have a natural exact sequence 0→ Qp(1)→ Vp(E)→ Qp → 0 of representations
of GQp

, we obtain (H1
ét(EQp

,Qp(1))GQp
)∨ ≃ (H1

ét(EQp
,Qp(1))

∨)GQp ≃ Vp(E)(−1)GQp ̸= 0. Thus

we are done. Now we can ask the following weaker question:

Question. Are sub p-adic fields quasi-highly Kummer-faithful?

Under the “`-adic” and “p-adic” monodromy weight conjectures (Conj. 4.1 and 5.1 of [Ja]), we
can show the following.

Proposition 2.11. Assume the monodromy weight conjectures. Then any p-adic field is quasi-
highly Kummer-faithful.

Proof. Let K be a p-adic field, L a finite extension of K and X a proper smooth variety over
L of dimension g. Let ` be any prime number (including the case ` = p). Since we have
(Hi

ét(XK ,Qℓ)GL
)∨ ≃ (Hi

ét(XK ,Qℓ)
∨)GL ≃ H2g−i

ét (XK ,Qℓ(g))
GL , for our purpose, it suffices to

check the vanishing of H2g−i
ét (XK ,Qℓ(g))

GL . Since we have g /∈ [max{0, g− i}, (2g− i)/2] for i > 0,
it follows from Corollaries 4.3 and 5.2 of [Ja] (under the assumption of the monodromy weight
conjectures) that the above subspace is zero for any prime number `.

2.2 Criteria for high Kummer-faithfulness

We give some criteria for high Kummer-faithfulness in terms of ramification theory.

Theorem 2.12. Let K be a Galois extension of a number field k. Assume that, for any finite
extension k′/k, the ramification index of the maximal abelian subextension of Kk′/k′ at any finite
place of k′ is finite. Then K is highly Kummer-faithful.

In particular, any number field is highly Kummer faithful.

The theorem is a consequence of a general property of Galois representations (Lemma 2.14
below). To state it, we recall the notion of Weil weights.
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Definition 2.13. Let k be a number field, v a finite place of k not above `, V an `-adic represen-
tation of Gk and w a real number. We say that V has (pure) Weil weight w at v if

(a) V is unramified at v,

(b) coefficients of the characteristic polynomial det(T − Frobv | V ) are algebraic numbers, and

(c) for any root α of det(T−Frobv | V ) and any embedding ι : Q ↪→ C, it holds that |ι(α)| = q
w/2
v .

Here, qv is the order of the residue field of k at v.

For a proper smooth variety X over a number field k which has good reduction at a finite place
v of k, the Weil conjecture proved by Deligne [De1, De2] implies that Hi

ét(Xk,Qℓ(r)) has Weil
weight i− 2r at v.

Lemma 2.14. Let K be a Galois extension of a number field k and ` a prime number. Let M/k
be the maximal abelian subextension of K/k. Assume that the ramification index of the extension
M/k at any finite place of k above ` is finite. Then, for any Qℓ-representation V of Gk with
non-zero Weil weight at some finite place of k not above `, we have V GK = 0.

Proof. Assume that V GK ̸= 0. Then V GK is a non-zero Gk-stable submodule of V since K is a
Galois extension of k. Let ψ : Gk → Q×

ℓ be the character such that det V GK = Qℓ(ψ). We denote
by k(ψ)/k the splitting field extension of ψ. It follows from class field theory that the extension
k(ψ)/k is potentially unramified at all finite places of k not above ` and is unramified at all but
finitely many places of k. Since k(ψ) is an abelian subextension of K/k, we have k(ψ) ⊂M . Hence
the assumption on the extension M/k implies that the ramification degree of k(ψ)/k at any finite
place of k above ` is finite. Then class field theory implies that the extension k(ψ)/k is finite, and
so ψ(Gk) is finite. This contradicts the assumption that V (and hence detV = Qℓ(ψ) also) has
non-zero Weil weight at some finite place of k.

Proof of Theorem 2.12. Let L be a finite extension of K, X a proper smooth variety over L, ` a
prime number and i, r be integers such that i ̸= 2r. Put V = Hi

ét(XK ,Qℓ(r)). We take a finite
extension k′ of k so that L = Kk′ and X is defined over k′. Then, V is a Qℓ-representation of
Gk′ with non-zero Weil weight i− 2r at any finite place v of k not above ` such that X has good
reduction at v. It follows from the assumption on K, k and Lemma 2.14, that V GL = 0.

Definition 2.15. (1) Let K be an algebraic extension of a p-adic field k and K̃ the Galois closure
of K/k. Put G = Gal(K̃/k). We say that the extension K/k has finite maximal ramification
break if Gc is trivial1 for c large enough. In the case where K is an abelian extension of k, this is
equivalent to the condition that the ramification index of K/k is finite by local class field theory.
(2) Let K be a Galois extension of a number field k. For any finite place v of k, We say that
the extension K/k has a finite maximal ramification break at v if the extension Kw/kv has finite
maximal ramification break where w is a finite place of K above v. Note that this definition does
not depend on the choice of w. Note also that, if K is an abelian extension of a number field k,
K/k has finite maximal ramification break at a finite place v of k if and only if the ramification
index of K/k at v is finite.
(3) Let K be a Galois extension of a number field k. We say that the extension K/k has finite
maximal ramification break everywhere if it has finite maximal ramification break at any finite
place v of k.

Note that the property “having finite maximal ramification break” is unchanged by finite ex-
tension of the base field k. Hence the following corollary follows from Theorem 2.12:

Corollary 2.16. Let K be a Galois extension of a number field k. Assume that the extension K/k
has finite maximal ramification break everywhere. Then K is highly Kummer-faithful.

1We follow Serre’s convention ([Se1], Chap. IV, §3) for the i-th upper ramification subgroup Gi. In particular,
G−1 = G, Gi for −1 < i ≤ 0 is the inertia subgroup of G, and G0+ :=

∪
i>0 G

i is the wild inertia subgroup of G.
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3 Examples

In this section, we give some examples of highly Kummer-faithful fields which are infinite algebraic
extensions of number fields. To check high Kummer-faithfulness, we often use Theorem 2.12,
Corollary 2.16 and the following lemma:

Lemma 3.1. Let k be a p-adic field and {Ki}i∈I a family of Galois extensions of k. Let KI be
the composite field of the Ki’s for all i ∈ I. Then, for a real number c ≥ −1, Gal(KI/k)

c is trivial
if and only if Gal(Ki/k)

c is trivial for any i ∈ I.

Proof. By [Se1, Chap. IV, Prop. 14], the natural surjection Gal(KI/k) ↠ Gal(Ki/k) induces a
surjection Gal(KI/k)

c ↠ Gal(Ki/k)
c. Furthermore, we have a natural injection Gal(KI/k) ↪→∏

i∈I Gal(Ki/k). The lemma immediately follows from these maps.

The following is an immediate consequence of Corollary 2.16 and Lemma 3.1.

Corollary 3.2. Let k be a number field.
(1) Let d > 0 be an integer. Then the composite field of all finite extensions of k of degree ≤ d is
highly Kummer faithful.
(2) Let {ki}i∈I be a family of finite extensions of k. Assume that the discriminants of ki/k are
prime to each other. Then the composite field of ki’s for all i ∈ I is highly Kummer faithful.

3.1 Construction of highly Kummer-faithful fields from semi-abelian va-
rieties

Let k be a number field. Let g > 0 be an integer and m := (mp)p a family of non-negative integers
where p ranges over the prime numbers. Let kg,m be the extension field of k obtained by adjoining
all coordinates of elements of B[pmp ] for all semi-abelian varieties B over k of dimension at most
g and all prime numbers p.

Theorem 3.3. (1) The extension kg,m/k has finite maximal ramification break everywhere.
(2) The field kg,m is highly Kummer-faithful.

Proof. (2) follows from (1) by Corollary 2.16. To prove (1), take any finite place v of k. By Lemma
3.1, it suffices to show that there exists an integer cv > 0 with the property that Gal(kv(B[pmp ])/kv)

cv

is trivial for any semi-abelian variety B over k of dimension at most g and any prime number p.
Let Bv/kv

be a semi-abelian variety of dimension at most g which is an extension of an abelian
variety Av/kv

by a torus Tv/kv
. By Raynaud’s criterion of semi-stable reduction [Gr, Prop. 4.7], the

abelian variety Av has semi-stable reduction over kv(Av[12]). We clearly have [kv(Av[12]) : kv] ≤
#GL2g(Z/12Z) =: c(g). On the other hand, set X(T ) := Homkv

(Tv,Gm) and r := dimTv. Then
X(T ) is a free Z-module of rank r and Gkv acts on X(T ). If we denote by kv,0/kv the splitting field
of this Gkv

action on X(T ), then the extension kv,0/kv is finite and Galois, the torus Tv splits over
kv,0 and we have an inclusion Gal(kv,0/kv) ↪→ GLr(Z). It is shown by Minkowski2 [Mi] that there
exists an integer c′(g) > 0, depending only on g, such that the order of any torsion subgroup of
GLg(Z) is bounded by c′(g). Thus we have [kv,0 : kv] ≤ c′(g). Now we denote by k′v the composite
field of all Galois extensions of kv of degree at most max{c(g), c′(g)}. Since there exist only finitely
many finite extensions of given degree over a p-adic field, we see that k′v is a finite Galois extension
of kv. We note that it follows from the above observation that, for any semi-abelian variety Bv/kv

of dimension at most g, Bv ⊗kv
k′v is an extension of an abelian variety with semi-stable reduction

by a split torus. Take a real number c′v > 0 so that Gal(k′v/kv)
c′v is trivial.

Let Bv/kv
be a semi-abelian variety of dimension at most g. If we denote by pv the prime

number below v, then we have [kv(B[p
mpv
v ]) : kv] ≤ #GL2g(Z/p

mpv
v Z) =: c(g,m, v). We denote

2More easily, the existence of c′(g) immediately follows from the fact that the kernel of the projection GLr(Z) →
GLr(Z/3Z) is torsion free.
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by k′′v the composite field of all Galois extensions of kv of degree at most c(g,m, v). Take a real
number c′′v > 0 so that Gal(k′′v/kv)

c′′v is trivial.
Now we set cv := max{c′v, c′′v}. We show that this cv has the desired property. Let B/k be a

semi-abelian variety of dimension at most g which is an extension of an abelian variety A/k by a
torus T/k. For the prime p below v, the inequality cv ≥ c′′v implies that Gal(kv(B[pmp ])/kv)

cv is
trivial. Next we take any prime p which is not below v. Let k′v be the finite Galois extension of kv
defined above. Since T ⊗k k

′
v is a split torus and A ⊗k k

′
v has semi-stable reduction, we see that

the inertia subgroup I ′v of Gk′
v
acts unipotently on Vp(B). In particular, ρB,p(I

′
v) is a pro-p group

where ρB,p : Gk → GLQp
(Vp(B)) is the continuous homomorphism obtained by the Gk-action on

Vp(B). On the other hand, we have Gcv
kv
⊂ Gc′v

kv
⊂ I ′v by definition of cv and c′v, and G

c′v
kv

is a pro-pv
group since c′v > 0. Hence ρB,p(G

cv
kv
) is trivial, which implies that Gal(kv(B[pmp ])/kv)

cv is trivial
as desired.

Remark 3.4. We recall that any sub-p-adic field is Kummer-faithful (cf. [Mo, Rem. 1.5.4]). If
mp > 0 for infinitely many p, our field kg,m above gives an example of a field that is not sub-p-adic
but Kummer-faithful. Indeed, let M be the subfield of kg,m obtained by adjoining to Q all pth
roots of unity for all primes p such that mp > 0. If kg,m is sub-p-adic, then M is also sub-p-adic.
However, this is impossible since the residue field of M at any finite place is infinite.

3.2 High Kummer-faithfulness of abelian extensions over Q
Theorem 2.12 says that the condition of finite ramification is sufficient for a Galois extension K of
a number field k to be highly Kummer-faithful. (Thus, for example, if K/k is a class field tower,
then K is highly Kummer-faithful.) It is natural to ask if it is also necessary. Unfortunately, the
necessity does not hold in general; see §3.3. If, however, K is an abelian extension of Q, then
Proposition 3.5 below shows the necessity.

Now we set µ(2) := µ4, µ(ℓ) := µℓ for odd primes ` and set µ :=
∪

ℓ µ(ℓ). Following [Mo, Def.
1.5], we say that a perfect field K is torally Kummer-faithful if, for every finite extension L of K
and every torus T over L, it holds that

T (L)div = 0.

By definition, Kummer-faithful fields are torally Kummer faithful.

Proposition 3.5. Let K be an abelian extension of Q. Then the following are equivalent.

(1) The ramification index of the extension K/Q is finite at any prime number.

(2) K is highly Kummer-faithful.

(3) K is Kummer-faithful.

(4) K is torally Kummer-faithful.

(5) The `-adic cyclotomic character χℓ : GK → Zℓ
× has open image for any prime number `.

(6) K is a subfield of Q(µpnp | p : prime) for some family of positive integers (np)p.

Proof. We know already that (1) ⇒ (2) ⇒ (3) ⇒ (4) (see Corollary 2.16, Proposition 2.9). The
implication (4) ⇒ (5) is easy to see, as noted in Remark 1.5.1 of [Mo]. The equivalence of (1) and
(6) is clear from class field theory. It remains to prove (5) ⇒ (1). Let K(µℓ∞) be the maximal
`-power cyclotomic extension of K. Since K/Q is abelian, by class field theory, the inertia group
of K(µℓ∞)/Q at ` is isomorphic to Zℓ

×, and that of K(µℓ∞)/K at a place above ` is identified
with an open subgroup of Im(χℓ). Thus if Im(χℓ) is open in Zℓ

×, the ramification index of K/Q
at ` is finite.
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3.3 Kummer-faithful fields with infinite ramification

The finite ramification condition is in general not necessary for a Galois extension of a number
field to be Kummer-faithful. In this subsection, we apply the main theorem of [Oz] to produce
Kummer-faithful fields with infinite ramification.

Theorem 3.6 ([Oz, Theorem 1.1]). Let k be a Galois extension of Qp of degree d. Let π be a
uniformizer of k and q the order of the residue field of k. Denote by kπ/k the Lubin-Tate extension
associated with π. Assume that neither of the following two conditions hold.

(a) q−1Nk/Qp
(π) is a root of unity, where Nk/Qp

denotes the norm map of k/Qp.

(b) Nk/Qp
(π) is a q-Weil integer of weight d/t for some integer 1 ≤ t ≤ d.

Then kπ is Kummer-faithful.

Note that the theorem is proved in a more general setting in [Oz]. However, we content ourselves
with the above version to keep the notation simple in the following construction of Kummer-faithful
fields,

Now let k be a number field. Let p be a prime number which splits completely in k, so that we
identify the completion of k at a place above p with Qp. Let π be an element of k which gives rise
to a uniformizer of Qp. Set f(x) := πx+ xp ∈ k[x]. Let K be the extension field of k obtained by
adjoining all roots of fn(x) = 0 for all n > 0 (here fn is the n-th composite of f). We apply the
theorem with d = 1; if the complex absolute value of π with respect to some embedding Q ↪→ C is
not equal to either p or

√
p, then K is Kummer-faithful. Indeed, K is a subfield of the Lubin-Tate

extension kπ of Qp defined by f(x) and Theorem 3.6 shows that kπ is Kummer-faithful.

3.4 A remark on the composite of Kummer-faithful fields

The condition “having finite maximal ramification break” is closed under the composition of fields
(Lemma 3.1). In view of Corollary 2.16, one may wonder if the composite field of Kummer-faithful
Galois extensions of a number field is again Kummer-faithful. At present, we do not know if this
is true or not. In the local case, however, this is not true, as the following example shows:

Example 3.7. For uniformizers π1 and π2 of (k =)Qp, we consider the following properties.

(1) The Lubin-Tate extensions kπ1
and kπ2

of k := Qp associated with π1 and π2 respectively,
are Kummer-faithful.

(2) The intersection kπ1
∩ kπ2

is a finite extension of Qp.

We claim that, if π1 and π2 satisfy the condition (2), then the composite field K of kπ1 and
kπ2 is not Kummer-faithful. Indeed, let M be the maximal abelian pro-p extension of Qp. By the
condition (2), the maximal pro-p subextension L/Qp of K/Qp is a Z2

p-extension and the extension
K/L is finite. In particular, it follows from local class field theory that M is a finite extension of
L. On the other hand, M is not Kummer-faithful since M(µp) contains all p-power roots of unity.
Then it follows that L and K are not Kummer-faithful.

Now we show that there exists a pair (π1, π2) which satisfies both conditions (1) and (2). We
first note that, by Theorem 3.6, the condition (1) holds if p−1πi is not a root of unity and πi
is not a p-Weil integer of weight 1 for i = 1, 2. Hence, to show the existence of a desired pair
(π1, π2), it is enough to prove that the condition (2) holds if π1π

−1
2 is not a root of unity. Assume

that kπ1
∩ kπ2

is an infinite extension of Qp. Let k1πi
be the subextension of kπi

/Qp of degree
p − 1 and set K1 := kπ1

k1π2
and K2 := kπ2

k1π1
. Then extensions K1/k

1
π1
k1π2

and K2/k
1
π1
k1π2

are
Zp-extensions. By the assumption, we have that K1 ∩K2 is an infinite degree extension of k1π1

k1π2
.

This implies the equality K1 ∩K2 = K1 = K2. Now we denote by χπi : GQp → Z×
p the Lubin-Tate

character associated with πi (cf. [Se2, Chap. III, A4]). If we regard χπi
as a continuous character

Q×
p → Q×

p by local class field theory, then χπi
is characterized by the property that χπi

(πi) = 1
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and χπi
(u) = u−1 for any u ∈ Z×

p . Note that the extension field of Qp which corresponds to
the kernel of χπi

is kπi
. We denote by η = χπ1

χ−1
π2

and also denote by Qp(η) the extension
field of Qp which corresponds to the kernel of η. Then Qp(η) is an unramified subextension
of kπ1kπ2/Qp, and it follows from the equality kπ1kπ2 = K1K2 = K1 that the residue field of
kπ1kπ2 is finite. Hence we obtain the fact that Qp(η) is a finite (unramified) extension of Qp,
that is, η(GQp

) is finite. Thus we have (χπ1
χ−1
π2

)j = 1 for some integer j > 0. Since we have

χπ1
(π2)χ

−1
π2

(π2) = χπ1
(π1 · (π−1

1 π2))χ
−1
π2

(π2) = π1π
−1
2 , it follows that π1π

−1
2 is a root of unity as

desired.

3.5 Construction of highly Kummer-faithful fields via integral p-adic
Hodge theory

Let k be a number field. Let L = (Lv)v be a collection of open normal subgroup Lv of Iv for each
finite place v of k. Let V be a geometric `-adic representation of Gk (in the sense of [FM]). We
say that the inertial level of V is bounded by L if V |Lv

is semi-stable at every v. Let h ≥ 0 be an
integer. We say that the length of Hodge-Tate weights of V is bounded by h if, for each v above `,
there exists integers av ≤ bv such that bv − av ≤ h and HTv(V ) ⊂ [av, bv]. Here, HTv(V ) is the
set of Hodge-Tate weights of V at v. (We normalize the notion of Hodge-Tate weights so that the
Hodge-Tate weight of cyclotomic character is one.) For a prime number `, we denote by Rℓ

L,h(Gk)
the set of geometric `-adic representations of Gk whose inertial level are bounded by L and the
length of Hodge-Tate weights are bounded by h.

Definition 3.8. Let T be a torsion Zℓ-representation of Gk. We say that T comes from Rℓ
L,h(Gk)

if there exist V ∈ Rℓ
L,h(Gk) and Gk-stable Zℓ-lattices L ⊂ L′ in V such that T ≃ L′/L.

Let m := (mp)p be a family of non-negative integers where p ranges over the prime numbers.
We denote by kL,h,m the extension field of k obtained by adjoining all splitting fields of all torsion
Zℓ-representations T coming from Rℓ

L,h(Gk) with `
mℓT = 0 for all prime numbers `.

Theorem 3.9. (1) The extension kL,h,m/k has finite maximal ramification break everywhere.
(2) The field kL,h,m is highly Kummer-faithful.

Proof. (2) follows from (1) by Corollary 2.16. To prove (1), we first reduce ourselves to the case
where

√
−1 ∈ k. Put k′ = k(

√
−1). For any finite place v′ of k′, set L′

v′ := Gk′
v′
∩ Lv where v

is the finite place of k below v′. Then L′
v′ is an open subgroup of Iv′ . Put L′ = (L′

v′)v′ where v′

runs thorough all finite places of k′. For any V ∈ Rℓ
L,h(Gk), we see V |Gk′ ∈ Rℓ

L′,h(Gk′). Thus we
have inclusions kL,h,m ⊂ kL,h,mk

′ ⊂ k′L′,h,m. It follows from this that, for the proof, it is enough
to show that k′L′,h,m/k

′ has finite maximal ramification break everywhere.

In the rest of the proof, we assume
√
−1 ∈ k. Take any finite place v of k and denote by p the

prime number below v. We take a finite Galois extension k′v/kv such that the inertia subgroup Ik′
v

of k′v is contained in Lv. Let c
′
v > 0 be a real number such that Gal(k′v/kv)

c′v is trivial. Let T be any
torsion Zℓ-representation coming from Rℓ

L,h(Gk) with `
mℓT = 0. Thus there exist V ∈ Rℓ

L,h(Gk)
and Gk-stable Zℓ lattices L ⊂ L′ in V such that T ≃ L′/L. We denote by kv(T ) the completion of
the splitting field k(T ) of the representation T of Gk at a place above v. For the proof, by Lemma
3.1, it suffices to show that there exists a real number cv > 0, depending only on L, h,mp and v
(not on T ), with the property that Gal(kv(T )/kv)

cv is trivial.
First we consider the case ` ̸= p. Let ρ : Gk → GLQℓ

(V ) be the continuous homomorphism
describing the Gk-action on V . It follows from the fact that Ik′

v
-action on V is unipotent that the

group ρ(Ik′
v
) is pro-`. Since the group G

c′v
kv

is pro-p and this is a subgroup of Ik′
v
, we obtain that

ρ(G
c′v
kv
) is trivial. This in particular implies that Gal(kv(T )/kv)

cv is trivial.
Next we consider the case ` = p. Let t > 0 be an integer so that χt

p mod pmp = 1 where

χp : Gk → Zp
× is the p-adic cyclotomic character. Since we have T = T ⊗Zp

Zp(nt) for any integer
n, we may suppose that HTv(V ) is contained in [0, r] where r := t+ h. Then T |Gk′

v
is a quotient
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of two Gk′
v
-stable lattices in a semi-stable Qp-representation with Hodge-Tate weights in [0, r].

Since T is killed by pmp , it follows from Theorem 1.1 of [CL]3 that there exists an integer c′′v > 0,

depending only on k′v,mp and r, such that G
c′′v
k′
v
acts on T trivially (see also Theorem 1.1 of [Ha]).

Furthermore, we have

G
c′′v
k′
v
= Gk′

v
∩G

φk′
v/kv

(c′′v )

kv
⊃ Gc′v

kv
∩G

φk′
v/kv

(c′′v )

kv
= Gcv

kv

where cv := max{c′v, ϕk′
v/kv

(c′′v)} and ϕk′
v/kv

(u) is the Herbrand function for k′v/kv, that is,

ϕk′
v/kv

(u) :=

∫ u

0

1

(Gal(k′v/kv)0 : Gal(k′v/kv)t)
dt.

Hence the action of Gcv
kv

on T is trivial. Therefore, we obtain that Gal(kv(T )/kv)
cv is trivial. Note

that we may say that cv is determined by L, h,mp and v.
Now the constant cv satisfies the desired property.

Let d > 0 be an integer and m := (mp)p a family of non-negative integers where p ranges over
the prime numbers. Let kd-st,m be the extension field of k obtained by adjoining all coordinates of
elements of A[pmp ] for all prime numbers p and all abelian varieties A over k which have semi-stable
reduction everywhere over an extension of k of degree at most d. Note that we have no restriction
on the dimensions of abelian varieties for this definition; this is a remarkable difference between
definitions of kd-st,m and kg,m. As a consequence of Theorem 3.9, we obtain the following.

Corollary 3.10. (1) The extension kd-st,m/k has finite maximal ramification break everywhere.
(2) The field kd-st,m is highly Kummer-faithful.

Proof. For each finite place v of k, let k′v be the composite field of all Galois extensions of kv of
degree at most d. Note that k′v is a finite extension of kv. Let Lv (⊂ Iv) be the inertia group of k′v
and set L := (Lv)v. Then the result follows from the fact that kd-st,m is contained in kL,h,m with
h = 1.
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