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Abstract

Let K and k be p-adic fields. Let L be the composite field of K and a certain Lubin-Tate
extension over k (including the case where L = K(µp∞)). In this paper, we show that there
exists an explicitly described constant C, depending only on K, k and an integer g ≥ 1, which
satisfies the following property: If A/K is a g-dimensional CM abelian variety, then the order
of the p-torsion subgroup of A(L) is bounded by C. We also give a similar bound in the case
where L = K( p∞√K). Applying our results, we study bounds of orders of torsion subgroups
of some CM abelian varieties over number fields with values in full cyclotomic fields.

1 Introduction

Let p be a prime number and K a p-adic field (= a finite extension of Qp). It is a theorem of
Mattuck [Mat] that, for a g-dimensional abelian variety A over K and a finite extension L/K, the

Mordell-Weil group A(L) is isomorphic to the direct sum of Z⊕g·[L:Qp]
p and a finite group. Our

interest is to study various information about the torsion subgroup A(L)tor of A(L). For this,
Clark and Xarles [CX] gave an explicit upper bound of the order of A(L)tor of A(L) in terms of
p, g and some numerical invariants of L if A has anisotropic reduction. This includes the case
where A has potential good reduction and in this case the existence of a bound can be found in
some literatures (cf. [Si2], [Si3]). We consider the case where L/K is of infinite degree. There are
some situations in which the torsion part A(L)tor is finite. Suppose that A has potential good
reduction. It is a theorem of Imai [Im] that A(K(µp∞))tor is finite. Here, K(µp∞) is the extension
field of K obtained by adjoining all p-power roots of unity. Moreover, Kubo and Taguchi showed
in [KT] that A(K( p∞

√
K))tor is also finite where K( p∞

√
K) is the extension field of K obtained by

adjoining all p-power roots of all elements of K. The author showed in [Oz2] that there exists a
”uniform” and ”theoretical” bound of the order of A(K( p∞

√
K))tor under the assumption that A

has complex multiplication. (Here we say that A has complex multiplication if there exists a ring
homomorphism F → Q⊗Z EndKA for some algebraic number field F of degree 2g.)

The main purpose of this paper is to give explicit upper bounds of the orders of A(K(µp∞))tor
and A(K( p∞

√
K))tor for abelian varieties A/K with complex multiplication. For this, we should

note that to give an upper bound of the order of the prime-to-p part of A(K(µp∞))tor is not so
difficult. In fact, the reduction map gives an injection from the prime-to-p part of the group which
we want to study into certain rational points of the reduction Ā of A (if A has good reduction),
and the order of the target is bounded by the Weil bound. Hence the essential obstruction for our
purpose appears in a study of the p-part A(K(µp∞))[p∞] of A(K(µp∞))tor.

Let us state our main results. For a p-adic field k and a uniformizer π of k, we denote by
kπ/k the Lubin-Tate extension associated with π (that is, kπ is the extension field of k obtained
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by adjoining all π-power torsion points of the Lubin-Tate formal group associated with π). For
example, we have kπ = Qp(µp∞) if k = Qp and π = p. We set dL := [L : Qp] for any p-adic field
L. For any integer n > 0, we set

Φ(n) := Max{m ∈ Z | ϕ(m) divides 2n},
H(n) := gcd{]GSp2n(Z/NZ) | N ≥ 3}.

Here, ϕ is the Euler’s totient function. There are some upper bounds related with H(n) and Φ(n)
(see Section 5). It is a theorem of Silverberg [Si1] that we have H(n) < 2(9n)2n for any n > 0. It
follows from elementary arguments that we have Φ(n) < 6n 3

√
n for n > 1. Furthermore, a lower

bound (5.3) of ϕ proved by Rosser and Schoenfeld [RS] gives Φ(n) < 4n log log n for n > 33
9

.

Theorem 1.1 (= a special case of Theorem 3.1). Let g > 0 be a positive integer. Let k be a p-adic
field with residue cardinality qk and π a uniformizer of k. Assume the following conditions.

(i) q−1
k Nrk/Qp

(π) is a root of unity1; we denote by 0 < µ < p the minimum integer so that

(q−1
k Nrk/Qp

(π))µ = 1, and

(ii) dk is prime to (2g)!.

Then, for any g-dimensional abelian variety A over a p-adic field K with complex multiplication,
we have

A(Kkπ)[p
∞] ⊂ A[pC ]

where
C := 2g2 · (2g)! · Φ(g)H(g) · µ · dKk + 12g2 − 18g + 10.

In particular, we have
]A(Kkπ)[p

∞] ≤ p2gC .

As an immediate consequence of the theorem above, we obtain a result for cyclotomic exten-
sions; see Corollary 3.7. Furthermore, the method of our proof of Theorem 1.1 can be applied to
the filed K( p∞

√
K) discussed in Kubo and Taguchi, which gives a refinement of the main theorem

of [Oz2].

Theorem 1.2. Let g > 0 be a positive integer. For any g-dimensional abelian variety A over a
p-adic field K with complex multiplication, we have

A(K(
p∞
√
K))[p∞] ⊂ A[pC ]

where
C := 2g2 · (2g)! · p1+vp(2) · (Φ(g)H(g))2 · pvp(dK)dK + 12g2 − 18g + 10.

(Here, vp is the p-adic valuation normalized by vp(p) = 1.) In particular, we have

]A(K(
p∞
√
K))[p∞] ≤ p2gC .

We can consider some further topics. For example, we do not know what will happen if we
remove the CM assumption from above theorems. Our proofs in this paper deeply depend on the
theory of locally algebraic representations, which can be adapted only for abelian representations.
This is the main reason why we can not remove the CM assumption form our arguments. To
overcome this obstruction, it seems to be helpful for us to study the case of (not necessary CM)
elliptic curves. We will study this case as a future work. We are also interested in giving the list
of the groups that appears as A(Kkπ)[p

∞] or A(K( p∞
√
K))[p∞]. However, this should be quite

difficult; the author does not know such classification results even for A(K)[p∞].
Combining the cyclotomic case of Theorem 1.1 and Ribet’s arguments in [KL], we can obtain

a result on a bound of the order of the torsion subgroup of some CM abelian variety defined over a
number field with values in full cyclotomic fields. (Here, a number field is a finite extension of Q.)

1This condition is equivalent to say that some finite extension of kπ contains Qp(µp∞ ) (cf. [Oz1, Lemma 2.7
(2)]).
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Theorem 1.3. Let g > 0 be an integer. Let K be a number field of degree d and denote by h
the narrow class number of K. Let K(µ∞) be the field obtained by adjoining to K all roots of
unity. Let A be a g-dimensional abelian variety over K with complex multiplication which has good
reduction everywhere. Then, we have

A(K(µ∞))tor ⊂ A[N ]

where

N :=

(∏
p

p

)2g2·(2g)!·Φ(g)H(g)·dh+12g2−18g+10

.

Here, p ranges over the prime numbers such that either p ≤ (1 +
√
2
dh
)2g or p is ramified in K.

We should note that Chou gave in [Ch] the complete list of the groups that appears as
A(Q(µ∞))tor as A ranges over all elliptic curves defined over Q. For CM elliptic curves A over a
number field K, more precise observations for the order of A(K(µ∞))tor than ours are studied in
[CCM].

Acknowledgments. The author would like to thank Yuichiro Taguchi for useful discussion and
correspondence to the proof of our main results. The author would like to thank Manabu Yoshida
for giving us various advice on an earlier draft. Thanks also are due to Takaichi Fujiwara for
helpful advice on functions discussed in Section 5. This work is supported by JSPS KAKENHI
Grant Number JP19K03433.

Notation : For any perfect field F , we denote by GF the absolute Galois group of F . In this
paper, a p-adic field is a finite extension of Qp. If F is an algebraic extension of Qp, we denote by
OF and mF the ring of integers of F and its maximal ideal, respectively. We also denote by F ab

the maximal abelian extension of F (in a fixed algebraic closure of F ). We put dF = [F : Qp] if F
is a p-adic field. For an algebraic extension F ′/F , we denote by eF ′/F and fF ′/F the ramification
index of F ′/F and the extension degree of the residue field extension of F ′/F , respectively. We
set eF := eF/Qp

and fF := fF/Qp
, and also set qF := pfF . Finally, we denote by ΓF the set of

Qp-algebra embeddings of F into a (fixed) algebraic closure Qp of Qp.
.

2 Evaluations of some p-adic valuations for characters

We fix an algebraic closure Qp of Qp. Throughout this section, we assume that all p-adic fields are

subfields of Qp. Denote by vp the p-adic valuation normalized by vp(p) = 1. For any continuous

character ψ of GK , we often regard ψ as a character of Gal(Kab/K). We denote by ArtK the
local Artin map K× → Gal(Kab/K) with arithmetic normalization. We set ψK := ψ ◦ ArtK .

We denote by K̂× the profinite completion of K×. Note that the local Artin map induces a
topological isomorphism ArtK : K̂× ∼→ Gal(Kab/K). For a uniformizer πK of K , we denote by
χπK

: GK → O×
K the Lubin-Tate character associated with πK . By definition, the character χπK

is characterized by χπK ,K(πK) = 1 and χπK ,K(x) = x−1 for any x ∈ O×
K . Let π be a uniformizer

of k and denote by kπ the Lubin-Tate extension of k associated with π. The field corresponding
to the kernel of the Lubin-Tate character χπ : Gk → O×

k is kπ, and kπ is a totally ramified abelian
extension of k.
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Proposition 2.1. Let ψ1, . . . , ψn : GK →M× be continuous characters. Then we have

Min

{
n∑

i=1

vp(ψi(σ)− 1) | σ ∈ GKkπ

}

≤ Min

{
n∑

i=1

vp(ψi,Kk(ω)− 1) | ω ∈ Nr−1
Kk/k(π

fKk/kZ)

}
.

Proof. This is Proposition 3 of [Oz2] but we include a proof here for the sake of completeness. LetM
be the maximal unramified extension of k contained inKk. The group Art−1

k (Gal(kab/M)) contains

Art−1
k (Gal(kab/kur)) = O×

k . Furthermore, Art−1
k (Gal(kab/M)) is a subgroup of k̂× = πẐ × O×

k

of index [M : k] = fKk/k. Thus it holds that Art−1
k (Gal(kab/M)) = πfKk/kẐ × O×

k . Since we

have Art−1
k (Gal(kab/kπ)) = πẐ, we obtain Art−1

k (Gal(kab/Mkπ)) = πfKk/kẐ. If we denote by
ResKk/k the natural restriction map from Gal((Kk)ab/Kk) to Gal(kab/k), it is not difficult to

check Res−1
Kk/k(Gal(kab/Mkπ)) = Gal((Kk)ab/Kkπ). Thus we find Art−1

Kk(Gal((Kk)ab/Kkπ)) =

Nr−1
Kk/k(π

fKk/kẐ). Now the lemma follows from

Min

{
n∑

i=1

vp(ψi(σ)− 1) | σ ∈ GKkπ

}

= Min

{
n∑

i=1

vp(ψi,Kk ◦Art−1
Kk(σ)− 1) | σ ∈ Gal((Kk)ab/Kkπ)

}
.

We recall an observation of Conrad. We denote by K0 the maximal unramified extension of
Qp contained in K and set DK

cris(∗) := (Bcris ⊗Qp
∗)GK . We denote by K× the Weil restriction

ResK/Qp
(Gm).

Proposition 2.2. Let ψ : GK →M× be a continuous character.
(1)M(ψ) is crystalline if and only if there exists a (necessarily unique) Qp-homomorphism ψalg : K

× →
M× such that ψK and ψalg (on Qp-points) coincides on O×

K(⊂ K×(Qp)).
(2) Assume that M(ψ) is crystalline and let ψalg be as in (1). (Note that M(ψ−1) is also crys-
talline.) Then, the filtered ϕ-module DK

cris(M(ψ−1)) = (Bcris ⊗Qp
M(ψ−1))GK over K is free of

rank 1 over K0 ⊗Qp M and its K0-linear endomorphism ϕfK is given by the action of the product

ψK(πK) · ψ−1
alg(πK) ∈M×. Here, πK is any uniformizer of K.

Proof. This is Proposition B.4 of [Co].

Let ψ : GK → M× be a crystalline character. For any σ ∈ ΓM , let χσM : IσM → σM× be the
restriction to the inertia IσM of the Lubin-Tate character associated with any choice of uniformizer
of σM (it depends on the choice of a uniformizer of σM , but its restriction to the inertia subgroup
does not). Assume that K contains the Galois Closure of M/Qp. Then, we have

ψ =
∏

σ∈ΓM

σ−1 ◦ χhσ

σM

on the inertia IK for some integer hσ. Equivalently, the character ψalg on Qp-points coincides with∏
σ∈ΓM

σ−1 ◦ Nr−hσ

K/σM . Note that {hσ | σ ∈ ΓM} is the set of Hodge-Tate weights of M(ψ), that

is, C ⊗Qp M(ψ) ≃ ⊕σ∈ΓM
C(hσ) where C is the completion of Qp.

For integers d, h and a p-adic field M , we define a constant C(d,M, h) by

C(d,M, h) := vp(d/dM ) + h+
dM
2

(
dM + vp(eM )− 1

eM
+ vp(2)(dM − 1)

)
. (2.1)
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Theorem 2.3. Let ψ1, . . . , ψn : GK →M× be crystalline characters and h ≥ 0 an integer. Assume
that M is a Galois extension of Qp and K contains M . Suppose that, for each i, we have

ψi =
∏

σ∈ΓM

σ−1 ◦ χhi,σ

M

on the inertia IK ; thus {hi,σ | σ ∈ ΓM} is the Hodge-Tate weights of M(ψi). We assume the
following conditions.

(i) {hi,σ | σ ∈ ΓM} contains at least two different integers for each i. (In particular, we have
M ̸= Qp.)

(ii) We have Min {vp(hi,σ − hi,τ ) | σ, τ ∈ ΓM} ≤ h for each i.

(1) There exists an element ω̂ ∈ ker NrM/Qp
with the property that, for every 1 ≤ i ≤ n, it holds

that
1 + vp(2) ≤ vp(ψi,K(ω̂)−1 − 1) ≤ δ(i) + C(dK ,M, h). (2.2)

Here,

δ(i) :=

{
0 if i = 1, 2,

2i− 5 if i ≥ 3.

(2) Let ω̂ be as in (1). For any x ∈ K×, there exists an integer 0 ≤ s(x) ≤ n with the property
that, for every 1 ≤ i ≤ n, it holds that

vp(ψi,K(xω̂ps(x)

)−1 − 1) ≤ n+ δ(i) + C(dK ,M, h). (2.3)

Proof. Take an element x ∈ OM such that OM = Zp[x]. We set p′ := p or p′ := 4 if p ̸= 2 or p = 2,
respectively, and put x′ = p′x. Set mτ

r,σ := dK/M (hr,τσ − hr,σ) for 1 ≤ r ≤ n and σ, τ ∈ ΓM . We
also set

yτr,ℓ :=
∑

σ∈ΓM

mτ
r,σ(σ

−1x′)ℓ−1

for 1 ≤ ` ≤ dM . (Note that yτr,1 = 0.) Set

ωℓ := exp((x′)ℓ−1) and ωτ
ℓ :=

τωℓ

ωℓ

for any 1 ≤ ` ≤ dM and τ ∈ ΓM . It holds ωτ
ℓ ∈ kerNrM/Qp

by construction.

Lemma 2.4. We have exp(yτr,ℓ) = ψr,K(ωτ
ℓ )

−1.

Proof. We see

ψr,K(ωℓ)
−1 =

∏
σ∈ΓM

σ−1 ◦NrK/M (ωℓ)
hr,σ =

( ∏
σ∈ΓM

σ−1ω
hr,σ

ℓ

)dK/M

.

We also have ψr,K(τωℓ)
−1 =

(∏
σ∈ΓM

σ−1τω
hr,σ

ℓ

)dK/M

=
(∏

σ∈ΓM
σ−1ω

hr,τσ

ℓ

)dK/M

. Thus we have

ψr,K(ωτ
ℓ )

−1 =

( ∏
σ∈ΓM

σ−1ω
hr,τσ−hr,σ

ℓ

)dK/M

=
∏

σ∈ΓM

σ−1ω
mτ

r,σ

ℓ .

On the other hand, we have

exp(yτr,ℓ) = exp

( ∑
σ∈ΓM

mτ
r,σ(σ

−1x′)ℓ−1

)
=
∏

σ∈ΓM

exp((σ−1x′)ℓ−1)m
τ
r,σ =

∏
σ∈ΓM

σ−1ω
mτ

r,σ

ℓ .

Thus we obtain the lemma.
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We furthermore need the following evaluation.

Lemma 2.5. For each 1 ≤ r ≤ n, there exist τr ∈ ΓM and an integer 2 ≤ `r ≤ dM such that

vp(y
τr
r,ℓr

) ≤ C(dK ,M, h).

Proof. In this proof, we fix r. By the assumption (i), there exist τ1, τ2 ∈ ΓM such that hr,τ1 ̸=
hr,τ2 . We choose such τ1 and τ2 so that vp(hr,τ1 − hr,τ2) = Min {vp(hr,σ − hr,τ ) | σ, τ ∈ ΓM}. Set
τ := τ2τ

−1
1 ∈ ΓM . We write ΓM = {τ1, τ2, . . . , τdM

}. Note that mτ
r,τ1 = dK/M (hr,τ2 − hr,τ1) is not

zero. We denote by X ∈Md(OM ) the matrix whose (i, j)-component is (τ−1
i x′)j−1. Then we have(

yτr,1 · · · yτr,dM

)
=
(
mτ

r,τ1 · · · mτ
r,τdM

)
X (2.4)

and the determinant detX of X is
∏

1≤i<j≤dM
(τ−1

j x′− τ−1
i x′) = (p′)

dM (dM−1)

2

∏
1≤i<j≤dM

(τ−1
j x−

τ−1
i x). We also have

vp

 ∏
1≤i<j≤dM

(τ−1
j x− τ−1

i x)

 =
∑

1≤i<j≤dM

vp
(
τ−1
j x− τ−1

i x
)

=
1

2

∑
1≤i,j≤dM ,i ̸=j

vp
(
τ−1
j x− τ−1

i x
)

=
dM
2
vp(DM/Qp

) ≤ dM
2

(
1 + vp(eM )− 1

eM

)
.

(cf. [Se, Chapter 3, Section 6, Proposition 13]), where DM/Qp
is the differential of M/Qp. We find

vp(detX) ≤ dM
2

(
dM + vp(eM )− 1

eM
+ vp(2)(dM − 1)

)
. (2.5)

By (2.4), we have mτ
r,τ1 detX =

∑dM

ℓ=1 y
τ
r,ℓxℓ for some xℓ ∈ OM , which gives the fact that there

exists an integer `r = ` with the property that vp(y
τ
r,ℓ) ≤ vp(m

τ
r,τ1 detX). By (2.5), we have

vp(y
τ
r,ℓ) ≤ vp(dK/M ) + vp(hr,τ1 − hr,τ2) + vp(detX) ≤ C(dK ,M, h)

as desired. We remark that ` is not equal to 1 since yτr,1 is zero.

Now we return to the proof of Theorem 2.3. Take τr and `r as in Lemma 2.5 with the additional
condition that

vp(y
τr
r,ℓr

) = Min{vp(yτr,ℓ) | τ ∈ ΓM , 2 ≤ ` ≤ dM}. (2.6)

Here we consider an element ω̂ ∈ kerNrM/Qp
which is of the form ω̂ =

∏n
r=1(ω

τr
ℓr
)sr , where sr is

defined inductively by the following.

(s1, s2) =


(0, 1) if vp(y

τ1
1,ℓ1

) = vp(y
τ2
1,ℓ2

),

(1, 0) if vp(y
τ1
1,ℓ1

) ̸= vp(y
τ2
1,ℓ2

) and vp(y
τ1
2,ℓ1

) = vp(y
τ2
2,ℓ2

),

(1, 1) if vp(y
τ1
1,ℓ1

) ̸= vp(y
τ2
1,ℓ2

) and vp(y
τ1
2,ℓ1

) ̸= vp(y
τ2
2,ℓ2

).

s3 =

{
p if vp(s1y

τ1
3,ℓ1

+ s2y
τ2
3,ℓ2

) ̸= vp(py
τ3
3,ℓ3

),

p2 if vp(s1y
τ1
3,ℓ1

+ s2y
τ2
3,ℓ2

) = vp(py
τ3
3,ℓ3

).

For r ≥ 4,

sr =

{
psr−1 if vp(

∑r−1
j=1 sjy

τj
r,ℓj

) ̸= vp(psr−1y
τr
r,ℓr

),

p2sr−1 if vp(
∑r−1

j=1 sjy
τj
r,ℓj

) = vp(psr−1y
τr
r,ℓr

).

6



We calim that we have

1 + vp(2) ≤ vp

(
n∑

r=1

sry
τr
i,ℓr

)
≤ δ(i) + C(dK ,M, h)

for any i, where δ(i) is as in the statement (1). The inequality 1 + vp(2) ≤ vp

(∑n
r=1 sry

τr
i,ℓr

)
is

clear since we always have 1 + vp(2) ≤ vp(y
τ
i,ℓ) by definition of yτi,ℓ. We show vp

(∑n
r=1 sry

τr
i,ℓr

)
≤

δ(i) + C(dK ,M, h) by induction on i.

• Suppose either i = 1 or i = 2. By (2.6) and the inequality 0 < vp(sr) for r ≥ 3, it

is not difficult to check vp

(∑n
r=1 sry

τr
i,ℓr

)
= vp(y

τi
i,ℓi

). Furthermore, we have vp(y
τi
i,ℓi

) ≤
C(dK ,M, h) = δ(i) + C(dK ,M, h) by Lemma 2.5.

• Suppose i ≥ 3. By definition of si we have vp

(∑i−1
r=1 sry

τr
i,ℓr

)
≠ vp(siy

τi
i,ℓi

). We also have

vp

(∑n
r=i sry

τr
i,ℓr

)
= vp(siy

τi
i,ℓi

) since vp(siy
τi
i,ℓi

) < vp(sry
τr
i,ℓr

) for i < r. Hence, it follows from

Lemma 2.5 that we have

vp

(
n∑

r=1

sry
τr
i,ℓr

)
= Min

{
vp

(
i−1∑
r=1

sry
τr
i,ℓr

)
, vp(siy

τi
i,ℓi

)

}
≤ vp(psi−1y

τi
i,ℓi

) ≤ 1 + vp(si−1) + C(dK ,M, h)

if i ≥ 4. Since we have vp(si−1) ≤ 2(i − 3) if i ≥ 4, the claim for i ≥ 4 follows. The

claim for i = 3 follows by a similar manner; we have vp

(∑n
r=1 sry

τr
3,ℓr

)
≤ vp(py

τ3
3,ℓ3

) ≤
1 + C(dK ,M, h) = δ(3) + C(dK ,M, h).

By construction of ω̂ and Lemma 2.4, we see

ψi,K(ω̂)−1 =

n∏
r=1

ψi,K(ωτr
ℓr
)−sr =

n∏
r=1

exp
(
sry

τr
i,ℓr

)
= exp

(
n∑

r=1

sry
τr
i,ℓr

)
.

Thus we find vp(ψi,K(ω̂)−1 − 1) = vp

(∑n
r=1 sry

τr
i,ℓr

)
. Therefore, the claim above gives the state-

ment (1) of Theorem (2.3).

We show (2). We set mi := ψi,K(x)−1 − 1 and θ
(s)
i = ψi,K(ω̂ps

)−1 − 1 for any s ≥ 0. It follows

from the condition vp(ψi,K(ω̂)−1 − 1) ≥ 1 + vp(2) that the equality vp(θ
(s)
i ) = s + vp(θ

(0)
i ) holds.

For each 1 ≤ i ≤ n, there exists at most only one integer s ≥ 0 so that vp(mi) = vp(θ
(s)
i ) since

{vp(θ(s)i )}s is strictly increasing. Hence, there exists an integer 0 ≤ s(x) ≤ n with the property

that vp(mi) ̸= vp(θ
(s(x))
i ) for every 1 ≤ i ≤ n (by ”Pigeonhole principle”). With this choice of s(x),

we obtain vp(ψi,K(xω̂ps(x)

)−1 − 1) = vp(mi + θ
(s(x))
i +miθ

(s(x))
i ) ≤ vp(θ

(n)
i ) = n + vp(θ

(0)
i ). This

finishes the proof of (2).

3 Proof of main theorems

The main purpose of this section is to show Theorems 1.1 and 1.2 in Introduction. As for Theorem
1.1, we show a slightly refined statement as follows.

Theorem 3.1. Let g > 0 be a positive integer. Let k be a p-adic field with residue cardinality qk
and π a uniformizer of k. Put p′ = p or p′ = 4 if p ̸= 2 or p = 2, respectively. Let µ ≥ 1 be the
smallest integer2 so that

(q−1
k Nrk/Qp

(π))µ ≡ 1 mod p′.

2If q−1
k Nrk/Qp

(π) is a root of unity, the constant µ here coincides with µ appeared in Theorem 1.1.
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Assume the following conditions3.

(i) vp((q
−1
k Nrk/Qp

(π))µ − 1) > g · (2g)! · Φ(g)H(g) · µ · dKk/kfk and

(ii) dk is prime to (2g)!.

Then, for any g-dimensional abelian variety A over a p-adic field K with complex multiplication,
we have

A(Kkπ)[p
∞] ⊂ A[pC ]

where
C := 2g2 · (2g)! · Φ(g)H(g) · µ · dKk + 12g2 − 18g + 10.

In particular, we have
]A(Kkπ)[p

∞] ≤ p2gC .

Our proofs of Theorems 3.1 and 1.2 proceed by similar methods. As in the previous section,
we fix an algebraic closure Qp of Qp and suppose that K is a subfield of Qp. In this section, we
often use the following technical constants:

Lg(m) :=
[
logp(1 + p

m
2 )2g

]
,

C(m,M, h) := vp

(
m

dM

)
+ h+

dM
2

(
dM + vp(eM )− 1

eM
+ vp(2)(dM − 1)

)
.

Here, m ≥ 1 and h ≥ 0 are integers and M is a p-adic field.

Remark 3.2. (1) We have mg ≤ Lg(m) < g(m+ 1 + vp(2)) for any prime p and m ≥ 1, and we
also have Lg(m) < g(m+ 1) if (p,m) ̸= (2, 1), (2, 2).
(2) Moreover, we have4

Lg(m) = mg for m ≥ 8g.

This can be checked as follows: It suffices to show (1+ p
m
2 )2g < pmg+1 for m ≥ 8g. This inequality

is equivalent to (1 + p−
m
2 )2g < p. Thus it is enough to show (1 + 2−

m0
2 )2g < 2 where m0 := 8g.

By inequalities 2g < 22g and ( 2gr ) < 22g for 0 ≤ r ≤ 2g, we find

(
1 + 2−

m0
2

)2g
= 1 +

2g∑
r=1

( 2gr )

(
1

2

) rm0
2

< 1 + 2g · 22g
(
1

2

)m0
2

< 1 +

(
1

2

)m0
2 −4g

= 2

as desired.

3.1 Special cases

We consider Theorem 3.1 under some additional hypothesis. In this section, we show

Proposition 3.3. Let the situation be as in Theorem 3.1 except assuming not (i) but

(i)’ vp((q
−1
k Nrk/Qp

(π))µ − 1) > Lg((2g)! · µ · dKk/kfk).

Moreover, we assume that A has good reduction over K and all the endomorphisms of A are defined
over K. Put

Cg(K, k) = vp(dKk) +
(2g)!

2
((2g)! + vp((2g)!) + vp(2)((2g)!− 1)) ,

∆g(K, k) = Max
{
Cg(K, k), Lg((2g)! · µ · dKk/kfk)

}
.

3The condition (i) here depends on the choice of K. However, the author hopes that this condition would be
replaced with certain one which does not depend on K as (i) in Theorem 1.1.

4The evaluation 8g here is ”rough” but it is enough for our proofs.
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Then, we have
A(Kkπ)[p

∞] ⊂ A[pC ]

where
C := 2g∆g(K, k) + 12g2 − 18g + 10.

Proof. Put T = Tp(A) and V = Vp(A) to simplify notation. Let ρ : GK → GLZp(T ) be the

continuous homomorphism obtained by the GK-action on T . Fix an isomorphism ι : T
∼→ Z⊕2g

p of
Zp-modules. We have an isomorphism ι̂ : GLZp(T ) ≃ GL2g(Zp) relative to ι. We abuse notation
by writing ρ for the composite map GK → GLZp(T ) ≃ GL2g(Zp) of ρ and ι̂. Now let P ∈ T and
denote by P̄ the image of P in T/pnT . By definition, we have ι(σP ) = ρ(σ)ι(P ) for σ ∈ GK .
Suppose that P̄ ∈ (T/pnT )GKkπ . This implies σP −P ∈ pnT for any σ ∈ GKkπ

. This is equivalent
to say that (ρ(σ) − E)ι(P ) ∈ pnZ⊕2g

p , and this in particular implies det(ρ(σ) − E)ι(P ) ∈ pnZ⊕2g
p

for any σ ∈ GGKkπ
. Hence we find det(ρ(σ)− E)P ∈ pnT for any σ ∈ GKkπ

. Put

c = Min{vp(det(ρ(σ)− E))) | σ ∈ GKkπ
}.

Then we see P ∈ pn−cT (if c is finite and n > c) and this shows (T/pnT )GKkπ ⊂ pn−cT/pnT . This
implies an inequality

A(Kkπ)[p
∞] ⊂ A[pc] (3.1)

if c is finite.
On the other hand, let us denote by F the field of complex multiplication of A. We know that

V is a free F ⊗Q Qp-module of rank one and the GK-action on V commutes with F ⊗Q Qp-action.
Let

∏n
i=1 Fi denote the decomposition of F ⊗Q Qp into a finite product of p-adic fields. This

induces a decomposition V ≃ ⊕n
i=1Vi of Qp[GK ]-modules. Each Vi is equipped with a structure

of one dimensional Fi-modules and the GK-action on Vi commutes with Fi-action. Let ρi : GK →
GLQp

(Vi) be the homomorphism obtained by the GK-action on Vi. Since ρi is abelian, it follows

from the Shur’s lemma that we have (Vi ⊗Qp
Qp)

ss ≃ ⊕dFi
j=1Qp(ψi,j) for some continuous characters

ψi,j : GK → Q×
p . Here, the subscript ”ss” stands for the semi-simplification. As is well-known, ψi,j

satisfies the following properties (since the GK-action on Vi is given by a character GK → F×
i ):

(a) ψi,1, . . . , ψi,dFi
are Qp-conjugate with each other, that is, ψi,k = τkℓ ◦ψi,ℓ for some τkℓ ∈ GQp

,
and

(b) ψi,1, . . . , ψi,dFi
have values in a p-adic fieldMi (in the fixed algebraic closure Qp of Qp) which

is Qp-isomorphic5 to the Galois closure of Fi/Qp (in an algebraic closure of Fi). We remark
that dMi

divides dFi
!.

In particular, we have
vp(det ρi(σ)− E) = dFivp(ψi(σ)− 1),

where ψi := ψi,1. Let M be the composite field of M1, . . . ,Mn, and we regard ψ1, . . . , ψn as
characters of GK with values in M×; ψi : GK → M×. The field M is a Galois extension of Qp in
Qp and dM divides dF1 !dF2 ! · · · dFn !. Since

∑n
i=1 dFi = 2g, we find

dM | (2g)!. (3.2)

(Here, we recall that the product of consecutive n natural numbers is divided by n! for any natural
number n.) In particular, we have M ∩ k = Qp since dk is prime to (2g)!, and then we obtain

kerNrM/Qp
⊂ kerNrMk/k ⊂ kerNrKMk/k.

5Note that K lives in our fixed algebraic closure Qp of Qp but Fi does not lives in Qp.
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Here, KM is the composite KM of K and M . It follows from Proposition 2.1 that we obtain

c ≤ Min {vp(det(ρ(σ)− E))) | σ ∈ GKMkπ
} = Min

{
n∑

i=1

dFi
vp(ψi(σ)− 1) | σ ∈ GKMkπ

}

≤ Min

{
n∑

i=1

dFivp(ψi,KMk(πω)
−1 − 1) | ω ∈ kerNrKMk/k

}

≤ Min

{
n∑

i=1

dFi
vp(ψi,KMk(πω)

−1 − 1) | ω ∈ kerNrM/Qp

}

≤ Min

{
n∑

i=1

dFi
vp(ψ

µ
i,KMk(πω)

−1 − 1) | ω ∈ kerNrM/Qp

}
. (3.3)

Here, µ is the integer appeared in the statement of Theorem 3.1. Note that ψi is a crystalline
character since A has good reduction over K. By rearranging the numbering of subscripts, we may
suppose the following situation for some 0 ≤ r ≤ n.

(I) For 1 ≤ i ≤ r, the set of the Hodge-Tate weights of M(ψi) is {0, 1}.

(II) For r < i ≤ n, the set of the Hodge-Tate weights of M(ψi) is either {1} or {0}.

Lemma 3.4. For r < i ≤ n and any ω ∈ kerNrM/Qp
, we have

vp(ψ
µ
i,KMk(πω)

−1 − 1) ≤ Lg((2g)! · dKk/kfk · µ).

Proof. In this proof we set L := KMk. We know that the morphism ψi,alg : L
× → M× corre-

sponding to ψi|GL
is trivial or Nr−1

L/Qp
on Qp-points. This in particular gives ψi,L(ω) = 1. Since

π
eL/k

L π−1 is a p-adic unit for any uniformizer πL of L, we find

ψi,L(πω)
−1 = ψi,L(π)

−1 = ψi,L(π
−eL/k

L · πeL/k

L π−1)

= α
−eL/k

i · ψi,alg(π)
−1

where αi := ψi,L(πL)ψi,alg(πL)
−1. Denote by L′ the unramified extension of L of degree µeL/k.

(I) Suppose that the set of the Hodge-Tate weights of M(ψi) is {0}. In this case ψi,alg is trivial

and thus we have ψµ
i,L(πω)

−1 = α
−µeL/k

i . It follows from Lemma 9 of [Oz2] that ψµ
i,L(πω)

−1 is
a unit root of the characteristic polynomial f(T ) of the geometric Frobenius endomorphism of
A/FL′ . Since f(1) = ]A(FqL′ ), we see vp(ψ

µ
i,L(πω)

−1 − 1) ≤ vp(]A(FqL′ )) ≤
[
logp ]A(FqL′ )

]
. It

follows from the Weil bound that vp(ψ
µ
i,L(πω)

−1 − 1) ≤ Lg(fL′). Since we have fL′ = µeL/kfL =
dL/Kk · µ · dKk/kfk ≤ (2g)! · µ · dKk/kfk. we obtain the desired inequality.

(II) Suppose that the set of the Hodge-Tate weights of M(ψi) is {1}. In this case ψi,alg is
Nr−1

L/Qp
on Qp-points. If we set β := q−1

k Nrk/Qp
(π), we find

ψµ
i,L(πω)

−1 − 1 = (α−1
i Nrk/Qp

(π)fL/k)µeL/k − 1

= ((α−1
i qL)

µeL/k − 1)βµdL/k + (βµdL/k − 1).

It again follows from Lemma 9 of [Oz2] that (α−1
i qL)

µeL/k is a unit root of the characteristic
polynomial f∨(T ) of the geometric Frobenius endomorphism of A∨

/FL′ . Since f
∨(1) = ]A∨(FqL′ ),

the same argument as in (I) shows that vp((α
−1
i qL)

µeL/k − 1) ≤ Lg(fL′) ≤ Lg((2g)! · µ · dKk/kfk).

In particular, we have vp(β
µdL/k − 1) > vp((α

−1
i qL)

µeL/k − 1) by the assumption (i)’. Since β is
a p-adic unit, we obtain vp(ψ

µ
i,L(πω)

−1 − 1) = vp((α
−1
i qL)

µeL/k − 1) ≤ Lg((2g)! · µ · dKk/kfk) as
desired.
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By (3.3) and the lemma, in the case where r = 0, we have

c ≤
n∑

i=1

dFiLg((2g)! · µ · dKk/kfk) = 2gLg((2g)! · µ · dKk/kfk). (3.4)

In the rest of the proof, we assume that r > 0. By (3.3) and the lemma again, we have

c ≤ Min

{
r∑

i=1

dFivp(ψ
µ
i,KMk(πω)

−1 − 1) | ω ∈ kerNrM/Qp

}

+ Lg((2g)! · µ · dKk/kfk)

n∑
i=r+1

dFi .

Here we remark that vp(µ) = 0 and the Hodge-Tate weights of ψµ
i for each 1 ≤ i ≤ r consist

of 0 and µ. Hence, applying Theorem 2.3 to the set of characters ψµ
1 , . . . , ψ

µ
r : GKMk → M×, an

element x = π and h = 0, there exists an element ω̂ ∈ kerNrM/Qp
and an integer 0 ≤ s = s(π) ≤ r

as in the theorem. Then we obtain

c ≤
r∑

i=1

dFivp(ψ
µ
i,KMk(πω̂

ps

)−1 − 1) + Lg((2g)! · µ · dKk/kfk)

n∑
i=r+1

dFi

≤
r∑

i=1

dFi
(r + δ(i) + C(dKMk,M, 0)) + Lg((2g)! · µ · dKk/kfk)

n∑
i=r+1

dFi

≤ 2g∆0 +

r∑
i=1

dFi
(r + δ(i))

where ∆0 := Max
{
C(dKMk,M, 0), Lg((2g)! · µ · dKk/kfk)

}
. Since dM divides (2g)!, we also have

C(dKMk,M, 0) < vp(dKk) +
(2g)!

2
((2g)! + vp((2g)!) + vp(2)((2g)!− 1)) .

Thus, for the constant ∆g(K, k) defined in the statement of the proposition, we obtain ∆0 ≤
∆g(K, k) and c ≤ 2g∆g(K, k) +

∑r
i=1 dFi

(r + δ(i)).

• If r ≤ 2, we have
∑r

i=1 dFi
(r + δ(i)) =

∑r
i=1 dFi

r ≤ r · 2g ≤ 4g.

• If r > 2, we have
∑r

i=1 dFi(r+δ(i)) = r
∑r

i=1 dFi+
∑r

i=3 dFiδ(i) ≤ n
∑n

i=1 dFi+
∑n

i=3 dFi(2n−
5) ≤ n · 2g + (2n− 5)(

∑n
i=1 dFi

− 2) ≤ 2g · 2g + (4g − 5) · (2g − 2) = 12g2 − 18g + 10.

Therefore, for any r > 0, we find

c ≤ 2g∆g(K, k) + 12g2 − 18g + 10.

Note that this inequality holds also for the case r = 0 by (3.4). Now the proposition follows from
(3.1).

3.2 General cases

We show Theorems 3.1 and 1.2. For this, we need the following observations given by Serre-Tate
[ST] and Silverberg [Si1].

Theorem 3.5. Let A be a g-dimensional abelian variety over K.
(1) Put m = 3 or m = 4 if p ̸= 3 or p = 3, respectively. Then A has semi-stable reduction over
K(A[m]) and all the endomorphisms of A are defined over K(A[m]).
(2) Let L be the intersection of the fields K(A[N ]) for all integers N > 2. Then, all the endomor-
phisms of A are defined over L and [L : K] divides H(g).
(3) Assume that A has potential good reduction. Let ρA,ℓ : GK → GLZp

(Tℓ(A)) be the continuous
homomorphism defined by the GK-action on the Tate module Tℓ(A) for any prime `.
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(3-1) For any prime ` not equal to p, let Hℓ be the kernel of the restriction of ρA,ℓ to IK . Then
Hℓ is an open subgroup of IK , which is independent of the choice of `. Moreover, if we set
c := [IK : Hℓ], then there exists a finite totally ramified extension L/K of degree c such that
A has good reduction over L.

(3-2) If A has complex multiplication and all the endomorphisms of A are defined over K, then
the constant c above satisfies c ≤ Φ(g).

(4) Assume that A has complex multiplication (over K). Then, there exists a finite extension L/K
of degree at most Φ(g)H(g) such that A has good reduction over L and all the endomorphisms of
A are defined over L.

Proof. (1) follows from [Si1, Theorem 4.1] and the Raynaud’s criterion of semi-stable reduction
[Gr, Proposition 4.7]. (2) is [Si1, Theorem 4.1], and (4) is an immediate consequence of (2) and (3)
since A must have potential good reduction under the condition that A has complex multiplication.
The first statement related to Hℓ in (3-1) is [ST, §2, Theorem 2, p.496]. The rest assertions of
(3) are also essentially consequences of results given in §2 and §4 of [ST] but it is not directly
mentioned in loc., cit. Thus we give a proof here, just in case. The group H is a closed normal
subgroup of GK , which is also open in IK . Let Γ be the closure of the subgroup of GK generated
by any choice of a lift of the qK-th Frobenius element in GFqK

. The projection GK → GFqK
gives

an isomorphism of Γ onto GFqK
; in particular, GK is the semi-direct product of Γ and IK . Let

KΓ/K be the field extension (of infinite degree) corresponding to Γ ⊂ GK , and let M/Kur be the
finite extension corresponding to H := Hℓ ⊂ IK . Note that A has good reduction over M . Now we
set L := KΓ ∩M . Then L/K is totally ramified since so is KΓ/K. Furthermore, it is immediate
to check HΓ ∩ IK = H; this shows LKur = M . Hence we obtain that A has good reduction over
L and [L : K] = [M : Kur] = c. This shows (3-1). Next we show (3-2). Let F be the number field
of degree 2g of complex multiplication of A. Then Vℓ(A) has a structure of free F ⊗Q Qℓ module
of rank one and the GK-action on Vℓ(A) commutes with F ⊗Q Qℓ. Thus we may consider ρA,ℓ as
a character GK → (F ⊗Q Qℓ)

×. Moreover, the image of this character restricted to IK has values
in the group µ(F ) of roots of unity contained in F by [ST, §4, Theorem 6, p.503]. Thus we obtain
the fact that c divides the order m of µ(F ). On the other hand, since µm is a subset of F , we have
ϕ(m) | 2g. Therefore, we obtain c ≤ m ≤ Φ(g) as desired.

Now we are ready to show our main theorems. First we show Theorem 3.1.

Proof of Theorem 3.1. Let A be as in the theorem. Since A has complex multiplication, it follows
from Theorem 3.5 (4) that there exists a finite extension L/K such that dL/K ≤ Φ(g)H(g), A has
good reduction over L and all the endomorphisms of A are defined over L. In addition, we have
vp((q

−1
k Nrk/Qp

(π))µ − 1) > g · (2g)! ·Φ(g)H(g) · µ · dKk/kfk = Lg((2g)! ·Φ(g)H(g) · µ · dKk/kfk) ≥
Lg((2g)! · µ · dLk/kfk) by the assumption (i) and Remark 3.2 (2). Thus we can apply Proposition
3.3 to A/L; we have

A(Lkπ)[p
∞]) ⊂ A[pC

′
]

where C ′ = 2g∆g(L, k) + 12g2 − 18g + 10. Here,

Cg(L, k) = vp(dLk) +
(2g)!

2
((2g)! + vp((2g)!) + vp(2)((2g)!− 1)) ,

∆g(L, k) = Max
{
Cg(L, k), Lg((2g)! · µ · dLk/kfk)

}
.

Note that we have vp(dLk) < dLk ≤ Φ(g)H(g) ·dKk and Lg((2g)! ·µ ·dLk/kfk) ≤ g ·(2g)! ·Φ(g)H(g) ·
µ · dKk. Therefore, it suffices to show

Φ(g)H(g) · dKk +
(2g)!

2
((2g)! + vp((2g)!) + vp(2)((2g)!− 1)) < g · (2g)! · Φ(g)H(g) · µ · dKk

for the proof but this is clear.
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Remark 3.6. In the above proof of Theorem 3.1, we referred the field extension L/K of Theorem
3.5 (4) and the upper bound Φ(g)H(g) of [L : K]. By Theorem 3.5 (1), we may refer the field
K(A[m]) instead of the above L. Since we have a natural embedding from Gal(K(A[m])/K) into
GL(A[m]) ≃ GL2g(Z/mZ), we obtain a bound for the extension degree of K(A[m])/K; we have
[K(A[m])/K] ≤ G(g), where

G(n) := ]GL2n(Z/mZ) =
{ ∏2n−1

i=0 (32n − 3i) if p ̸= 3,

24n
2 ∏2n−1

i=0 (22n − 2i) if p = 3.

for n > 0. Note that we have G(n) < m4n2

. It is not difficult to check the inequalities Φ(1)H(1) >
G(1) and Φ(g)H(g) < G(g) for g > 1 (see Section 5 below). Hence, only in the case g = 1 of elliptic
curves, we can obtain smaller bound than that given in Theorem 3.1 by replacing Φ(g)H(g) with
G(1).

Applying Theorem 1.1 with k = Qp and π = p, we immediately obtain the following.

Corollary 3.7. Let A be a g-dimensional abelian variety over a p-adic field K with complex
multiplication. Then we have

A(K(µp∞))[p∞] ⊂ A[pC ]

where

C := 2g2 · (2g)! · Φ(g)H(g) · dK + 12g2 − 18g + 10

In particular, we have
]A(K(µp∞))[p∞] ≤ p2gC .

Next we show Theorem 1.2.

Proof of Theorem 1.2. We follow essentially the same argument as that of Theorem 3.1. Put
K̂ = K( p∞

√
K).

Step 1. First we consider the case where A has good reduction over K and all the endomor-
phisms of A are defined over K. Put ν = vp(dK) + 1 + vp(2) and

Cg(K) = vp(dK) + ν +
(2g)!

2
((2g)! + vp((2g)!) + vp(2)((2g)!− 1)) ,

∆g(K) = Max {Cg(K), Lg((2g)! · pν · dK)} .

Following the proof of Proposition 3.3, we show

A(K̂)[p∞] ⊂ A[pC
′
] (3.5)

where C ′ := 2g∆g(K) + 12g2 − 18g + 10. Let ρ : GK → GLZp(Tp(A)) ≃ GL2g(Zp), M/Qp and

ψ1, . . . , ψn : GK → M× be as in the proof of Proposition 3.3. If we denote by K̂ab the maximal
abelian extension of K contained in K̂, all the points of A(K̂)[p∞] are in fact defined over K̂ab

since ρ is abelian. Thus, setting c := Min{vp(det(ρ(σ)− E))) | σ ∈ GK̂ab
}, we find

A(K̂)[p∞] = A(K̂ab)[p
∞] ⊂ A[pc] (3.6)

if c is finite (see arguments just above (3.1)). On the other hand, we set G := Gal(K̂/K) and
H := Gal(K̂/K(µp∞)). Let χp : GK → Z×

p be the p-adic cyclotomic character. Since we have

στσ−1 = τχp(σ) for any σ ∈ G and τ ∈ H, we see (G,G) ⊃ (G,H) ⊃ Hχp(σ)−1. Hence we have a
natural surjection

H/Hχp(σ)−1 ↠ H/(G,G) = Gal(K̂ab/K(µp∞)) for any σ ∈ G. (3.7)

Lemma 3.8. We have χp(σ0)− 1 = pν for some σ0 ∈ G.
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Proof. We denote by K ′ the field K(µp) or K(µ4) if p ̸= 2 or p = 2, respectively. If we denote
by pℓ the order of the set of p-power roots of unity in K ′, we see K ′ ∩ Qp(µp∞) = Qp(µpℓ) and
thus χp(GK′) = 1 + pℓZp. Furthermore, since [Qp(µpℓ) : Qp] divides [K ′ : K][K : Qp], we see

pℓ−1−vp(2) | dK . Hence we obtain χp(GK′) ⊃ 1 + pνZp and the lemma follows.

By the lemma above and (3.7), we see that Gal(K̂ab/K(µp∞)) is of exponent pν , that is,
σ ∈ GK(µp∞ ) implies σpν ∈ GK̂ab

. This shows c ≤ Min{vp(det(ρ(σ)p
ν − E))) | σ ∈ GK(µp∞ )}.

Mimicking the arguments for inequalities (3.3), we find

c ≤ Min

{
n∑

i=1

dFi
vp(ψ

pν

i,KM
(πω)−1 − 1) | ω ∈ kerNrM/Qp

}
.

Now the inequality (3.6) follows by completely the same method as the proof of Proposition 3.3
(with replacing the pair (k, µ) there with (Qp, p

ν)).
Step 2. Next we consider the general case. Since A has complex multiplication, it follows from

Theorem 3.5 (4) that there exists a finite extension L/K such that dL/K ≤ Φ(g)H(g), A has good
reduction over L and all the endomorphisms of A are defined over L. Thus we can apply the result
of Step 1 to A/L; we have

A(K̂)[p∞] ⊂ A(L̂)[p∞] ⊂ A[pC
′′
]

where C ′′ := 2g∆g(L) + 12g2 − 18g + 10. We find

Lg((2g)! · pvp(dL)+1+vp(2) · dL) = Lg((2g)! · p1+vp(2) · pvp(dL/K)dL/K · pvp(dK)dK)

≤ Lg((2g)! · p1+vp(2) · (dL/K)2 · pvp(dK)dK)

≤ g · (2g)! · p1+vp(2) · (Φ(g)H(g))2 · pvp(dK)dK .

(For the last equality, see Remark 3.2 (2).) Now Theorem 1.2 immediately follows by ∆g(L) ≤
g · (2g)! · p1+vp(2) · (Φ(g)H(g))2 · pvp(dK)dK .

One of the keys for our arguments above is a theory of locally algebraic representations. Thus
our method essentially works also for abelian varieties A with the property that the GK-action on
the semi-simplification of Vp(A)⊗Qp

Qp is abelian. For example, this is the case where A has good
ordinary reduction.

Proposition 3.9. Let g > 0 be a positive integer. Let K and k be p-adic fields. Let π be a
uniformizer of k. Assume that q−1

k Nrk/Qp
(π) is a root of unity; we denote by 0 < µ < p the

minimum integer so that (q−1
k Nrk/Qp

(π))µ = 1. Then, for any g-dimensional abelian variety A
over K with good ordinary reduction, we have

A(Kkπ)[p
∞] ⊂ A[p2gLg(µdKk/kfk)].

In particular, we have

]A(Kkπ)[p
∞] ≤ p4g

2Lg(µdKk/kfk) < p4g
3(µdKk/kfk+1+vp(2)).

Proof. Put V = Vp(A), T = Tp(A) and c = Min{vp(det(ρ(σ) − E))) | σ ∈ GKkπ
}. By the same

argument as the beginning of the proof of Proposition 3.3, we obtain

A(Kkπ)[p
∞] ⊂ A[pc] (3.8)

if c is finite. Since A has good ordinary reduction, we have an exact sequence 0 → V1 → V →
V2 → 0 of Qp[GK ]-modules with the following properties.

(i) V1 ≃W ⊗Qp
Qp(1) for some unramified representation W of GK , and
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(ii) V2 is unramified.

Hence, taking a p-adic field M large enough, we have (V ⊗Qp
M)ss ≃ ⊕2g

i=1M(ψi) for some con-
tinuous crystalline characters ψi : GK →M×. Furthermore, for every i, the set of the Hodge-Tate
weights ofM(ψi) is either {1} or {0}. By Proposition 2.1, we have c ≤

∑2g
i=1 vp(ψ

µ
i,Kk(π)

−1−1). Let
K ′ be the unramified extension ofKk of degree µeKk/k. By a similar method of the proof of Lemma
3.4, we find that ψµ

i,Kk(π)
−1 is a unit root of the characteristic polynomial f(T ) of the geometric

Frobenius endomorphism of A/FK′ , otherwise ψ
µ
i,Kk(π)

−1 is a unit root of the characteristic poly-

nomial f∨(T ) of the geometric Frobenius endomorphism of A∨
/FK′ . We know f(1) = ]A(FqK′ ) and

f∨(1) = ]A∨(FqK′ ), and their p-adic valuations are bounded by Lg(fK′) by the Weil bound. Since

we have fK′ = fK′/KkfKk = µdKk/kfk, we obtain c ≤
∑2g

i=1 vp(ψ
µ
i,Kk(π)

−1−1) ≤ 2gLg(µdKk/kfk).
Now the result follows from (3.8).

4 Abelian varieties over number fields

In this section, we suppose that K is a number field. The goal of this section is to give a proof of
Theorem 1.3 in Introduction. The theorem is an immediate consequence of the following proposi-
tion.

Proposition 4.1. Let g,K, d and h be as in Theorem 1.3.
(1) Let A be a g-dimensional abelian variety over K with semi-stable reduction everywhere. Let p0
be the smallest prime number such that A has good reduction at some finite place of K above p0.
Then A(K(µ∞))[p] is zero if p > (1+

√
p0

dh)2g, p is unramified in K and A has good reduction at
some finite place of K above p.
(2) Let A be a g-dimensional abelian variety over K with complex multiplication which has good
reduction everywhere. Then, for any prime p, we have

A(K(µ∞))[p∞] ⊂ A[pC ]

where C := 2g2 · (2g)! · Φ(g)H(g) · dh+ 12g2 − 18g + 10.

Proof. Let A be a g-dimensional abelian variety over K with semi-stable reduction everywhere.
Let K ′ be the maximal extension of K contained in K(µ∞) which is unramified at all finite places
of K. Note that K ′ is a finite abelian extension of K. In particular, it follows from class field
theory that [K ′ : K] is a divisor of the narrow class number h of K. If we denote by Lp the
maximal extension of K contained in K(µ∞) which is unramified at all places except for places
dividing p and the infinite places, then it is shown in [KL, Appendix, Lemma] that Lp = K ′(µp∞).

(1) We give a proof of the assertion (1). Here we mainly follow Ribet’s arguments in [KL].
We suppose that p is prime to 2p0 and also suppose that p is unramified in K. Assume that
A(K(µ∞))[p] ̸= O. We claim that there exists a g-dimensional abelian variety A′ over K ′ which
is K ′-isogenous to A such that A′(K ′)[p] ̸= O. We denote by G and H the absolute Galois groups
of K ′ and K(µ∞), respectively. The assumption A(K(µ∞))[p] ̸= O is equivalent to say that
A[p]H ̸= O. Let W be a simple G-submodule of A[p]H . Ribet showed in the proof of Theorem 2
of [KL] that, since A has semi-stable reduction everywhere over K ′, W is one-dimensional over Fp

and the action of G on W factors through Gal(K ′(µp)/K
′). Since p is unramified at K ′, we find

that the G-action on W is given by χn
p for some 0 ≤ n ≤ p− 1, where χp is the mod p cyclotomic

character. Moreover, since A has good reduction at some finite place of K ′ above p ( ̸= 2), it follows
from the classification of Tate and Oort that n is equal to 0 or 1. Thus W is isomorphic to Fp or
Fp(1). If we are in the former case, we have A′(K ′)[p] ̸= O for A′ := A. Suppose that we are in
the latter case. Then there exists a surjection A∨[p] → Fp of G-modules. If we denote by C the
kernel of this surjection, then the G-action on A∨[p] preserves C. This implies that A′ := A∨/C is
an abelian variety defined over K ′ and we find that there exists a trivial G-submodule of A′[p] of
order p. Thus we have A′(K ′)[p] ̸= O. This finishes the proof of the claim.
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Now we take a prime p′0 of K ′ above p0 such that A has good reduction at p′0. Since A
′ above

is K ′-isogenous to A, we know that A′ has good reduction at p′0 by [ST, §1, Corollary 2]. If we
denote by K ′

p′
0
the completion of K ′ at p′0 and also denote by Fp′

0
the residue field of K ′

p′
0
, then

reduction modulo p′0 gives an injective homomorphism

A′(K ′)[p] ⊂ A′(K ′
p′
0
)[p] ↪→ Ā′(Fp′

0
).

We recall that A′(K ′)[p] ̸= O. Since the order of Fp′
0
is bounded by pdh0 , it follows from the Weil

bound that we have p < (1 +
√
p0

dh)2g. This finishes the proof.
(2) We give a proof of the assertion (2). Let A be an abelian variety as in the statement. Since

A has good reduction everywhere over K, it follows from the criterion of Néron-Ogg-Shafarevich
that the GK-action on A[p∞] is unramified outside p. This gives the fact that the GK-action on
A(K(µp∞))[p∞] factors through Gal(Lp/K) = Gal(K ′(µp∞)/K). Thus we have

A(K(µ∞))[p∞] = A(K ′(µp∞))[p∞].

Since we have [K ′ : Q] ≤ dh, the result follows from Corollary 3.7.

5 Bounds on Φ(n) and H(n)

We recall the definitions of Φ(n) and H(n):

Φ(n) := Max{m ∈ Z | ϕ(m) divides 2n},
H(n) := gcd{]GSp2n(Z/NZ) | N ≥ 3}.

Here, ϕ is the Euler’s totient function. The lists of Φ(n), H(n) (and G(n) with p ̸= 3 appeared in
Remark 3.6) for small n are given at the end of this paper. In this section, we study some upper
bounds of Φ and H.

5.1 The function H

For the function H, we refer results of [Si1, §3 and §4]. The exact formula for H(n) is as follows:

H(n) =
1

2n−1

∏
q

qr(q)

where the product is over primes q ≤ 2n+ 1,

r(2) = [n] +

∞∑
j=0

[
2n

2j

]
, and r(q) =

∞∑
j=0

[
2n

qj(q − 1)

]
if q is odd.

Moreover, we have

Theorem 5.1 ([Si1, Corollary 3.3]). We have

H(n) < 2(9n)2n

for any n > 0.

5.2 The function Φ

Next we consider the function Φ. At first, we remark that Φ(n) must be even since ϕ(x) = ϕ(2x)
if x is odd. Furthermore, Φ(n) is not a power of 2. (In fact, we have ϕ(2r) = ϕ(2r−1 · 3) if r ≥ 2.)
Thus it holds that

Φ(n) = Max

{
m ∈ Z

∣∣∣∣∣ϕ(m) divides 2n, and m = 2rx

where r ≥ 1 and x ≥ 3 is odd

}
. (5.1)

We show some elementary formulas.

16



Proposition 5.2. (1) We have Φ(1) = 6 and 6 ≤ Φ(n) < 6n 3
√
n for n > 1.

(2) Put t = v2(n) + 2 and let p1 = 2 < p2 < · · · < pt be the first t prime numbers. Then we have

Φ(n) ≤ 2n

t∏
i=1

pi
pi − 1

.

In particular, we have Φ(n) ≤ 6n if n is odd.
(3) If n > 3 is an odd prime, we have6

Φ(n) =

{
6 if 2n+ 1 is not prime,

4n+ 2 if 2n+ 1 is prime.

Proof. To check Φ(1) = 6 is an easy exercise. Since ϕ(6) = 2 | 2n, we have Φ(n) ≥ 6 for any
n. Suppose n > 1. We take an even integer m > 0, which is of the form 2rx where r ≥ 1 and
x ≥ 3 is odd, such that ϕ(m) | 2n. Let m = 2r

∏s
i=1 q

ei
i be the prime factorization of m with

r, s, e1, . . . , es ≥ 1. Since ϕ(m) = 2r−1
∏s

i=1 q
ei−1
i (qi−1) and ϕ(m) | 2n, we have v2(2n) ≥ r−1+s

and thus
r + s ≤ v2(n) + 2. (5.2)

Then we find

2n ≥ ϕ(m) = m

(
1− 1

2

) s∏
i=1

(
1− 1

qi

)
≥ m

s+1∏
i=1

(
1− 1

pi

)
≥ m

t∏
i=1

(
1− 1

pi

)
.

This shows (2). Furthermore, we have

Φ(n) ≤ 2n

t∏
i=1

pi
pi − 1

= 6n

t∏
i=3

pi
pi − 1

≤ 6n

(
5

5− 1

)v2(n)

≤ 6n ·
(
5

4

)log2(n)

< 6n · 2 1
3 log2(n).

Thus we obtain (1). Let us show (3). From now on we assume that n > 3 is an odd prime. Assume
that m ̸= 6. Since n is odd, it follows from (5.2) that the prime factorization of m is of the form
m = 2qe for some odd prime q. Then 1

2ϕ(m) = qe−1 q−1
2 divides n. Since n > 3 is a prime and

m ̸= 6, we find e = 1 and q−1
2 = n. This implies 2n+ 1 must be prime and m = 4n+ 2. Now the

result follows.

Let us consider an upper bound of Φ by using an ”analytic” lower bound function of ϕ given
by Rosser and Schoenfeld. If we denote by γ the Euler’s constant7, it is shown in [RS, Theorem
15] that we have8

ϕ(m) >
m

eγ log logm+ 3
log logm

for m ≥ 3. We set
Ψ(n) := Max{m ∈ Z | ϕ(m) ≤ 2n}.

We clearly have Φ(n) ≤ Ψ(n) for all n > 0.

6A prime number p is called a Sophie German prime if 2p+1 is also prime. It is not known whether there exist
infinitely many Sophie German prime or not. On the other hand, there exist infinitely many prime which is not
Sophie German prime. In fact, every prime number p with p ≡ 1 mod 3 is not Sophie German prime.

7γ =

∫ ∞

1

(
1

[x]
−

1

x

)
dx = 0.57721 · · · . Note also eγ = 1.78107 · · · .

8More precisely, Theorem 15 of [RS] states that

φ(m) >
m

eγ log logm+ 5
2 log logm

(5.3)

for m ≥ 3 except when m is the product of the first nine primes m = 223092870 = 2 · 3 · 5 · ·7 · 11 · 13 · 17 · 19 · 23.
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Proposition 5.3. For any real number C > 2eγ , we have

Ψ(n) < Cn log log n

for any n large enough.

Proof. Put f(x) = C log log x. Take any integer N > 0 which satisfies the following properties:
For all x > N , it holds

(i) f(x) > 1
xe

e2 and

(ii) f(x) > 2eγ(log log(xf(x)) + 1).

(The assumption C > 2eγ asserts the existence of such N .) Take any integer n > N . It suffices to
show that n satisfies the desired inequality. Assume that there exists an integer m such that both
ϕ(m) ≤ 2n and m ≥ nf(n) hold. Since we have eγ > 3

log log x for x > ee
2

and m(≥ nf(n)) > ee
2

,
we find

1

eγ
· m

log logm+ 1
<

m

eγ log logm+ 3
log logm

< ϕ(m) ≤ 2n.

We also have nf(n)
log log(nf(n))+1 ≤ m

log logm+1 since the function x
log log x+1 is strictly increasing for x > e

and m ≥ nf(n)(> ee
2

) > e. Hence we obtain

1

eγ
· nf(n)

log log(nf(n)) + 1
< 2n,

which gives f(n) < 2eγ(log log(nf(n)) + 1). This contradicts the condition (ii). Therefore, we
conclude that, if ϕ(m) ≤ 2n, then it holds m < nf(n). This implies Ψ(n) < nf(n) = Cn log log n.

Remark 5.4. Consider the case C = 4. By studying (i) and (ii) in the above proof more carefully,
we can show

Ψ(n) < 4n log log n

for any n > e(1.001e)
9

.
Here we check the above inequality. The condition (ii) is equivalent to say that

(log x)
C

2eγ −1 > e

(
1 +

log(C log log x)

log x

)
.

We assume x > ee
9

. Since C
2eγ − 1 > 4

3.6 − 1 = 1
9 and log(C log log x)

log x < 0.001, the inequality (ii)

holds if (log x)
1
9 > 1.001e, that is, x > e(1.001e)

9

. Note that (i) clearly holds for such x.
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Table 1: Φ(n)
n Φ(n) n Φ(n) n Φ(n)

1 21 · 31 41 21 · 831 81 21 · 35
2 22 · 31 42 21 · 31 · 72 82 21 · 31 · 831
3 21 · 32 43 21 · 31 83 21 · 1671
4 21 · 31 · 51 44 22 · 31 · 231 84 22 · 31 · 72
5 21 · 111 45 21 · 311 85 21 · 111
6 21 · 31 · 71 46 21 · 31 · 471 86 21 · 1731
7 21 · 31 47 21 · 31 87 21 · 591
8 22 · 31 · 51 48 22 · 31 · 51 · 71 88 21 · 31 · 51 · 231
9 21 · 33 49 21 · 31 89 21 · 1791
10 21 · 31 · 111 50 21 · 53 90 21 · 33 · 111
11 21 · 231 51 21 · 1031 91 21 · 31
12 21 · 32 · 51 52 21 · 31 · 531 92 22 · 31 · 471
13 21 · 31 53 21 · 1071 93 21 · 32
14 21 · 291 54 21 · 33 · 71 94 22 · 31
15 21 · 311 55 21 · 112 95 21 · 1911
16 23 · 31 · 51 56 22 · 31 · 291 96 23 · 31 · 51 · 71
17 21 · 31 57 21 · 32 97 21 · 31
18 21 · 32 · 71 58 21 · 31 · 591 98 21 · 1971
19 21 · 31 59 21 · 31 99 21 · 1991
20 21 · 31 · 52 60 21 · 31 · 71 · 111 100 21 · 31 · 53
21 21 · 72 61 21 · 31 101 21 · 31
22 21 · 31 · 231 62 22 · 31 102 21 · 31 · 1031
23 21 · 471 63 21 · 1271 103 21 · 31
24 21 · 31 · 51 · 71 64 21 · 31 · 51 · 171 104 22 · 31 · 531
25 21 · 111 65 21 · 1311 105 21 · 2111
26 21 · 531 66 21 · 32 · 231 106 21 · 31 · 1071
27 21 · 34 67 21 · 31 107 21 · 31
28 21 · 31 · 291 68 21 · 1371 108 21 · 34 · 51
29 21 · 591 69 21 · 1391 109 21 · 31
30 21 · 32 · 111 70 21 · 31 · 711 110 21 · 31 · 112
31 21 · 31 71 21 · 31 111 21 · 2231
32 24 · 31 · 51 72 21 · 32 · 51 · 71 112 21 · 31 · 51 · 291
33 21 · 671 73 21 · 31 113 21 · 2271
34 22 · 31 74 21 · 1491 114 21 · 2291
35 21 · 711 75 21 · 1511 115 21 · 471
36 21 · 33 · 51 76 21 · 31 · 51 116 22 · 31 · 591
37 21 · 31 77 21 · 231 117 21 · 791
38 22 · 31 78 21 · 31 · 791 118 22 · 31
39 21 · 791 79 21 · 31 119 21 · 2391
40 21 · 31 · 51 · 111 80 22 · 31 · 51 · 111 120 21 · 31 · 52 · 71
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Table 2: H(n)
n H(n)

1 24 · 31
2 28 · 32 · 51
3 211 · 34 · 51 · 71
4 216 · 35 · 52 · 71
5 219 · 36 · 52 · 71 · 111
6 223 · 38 · 53 · 72 · 111 · 131
7 226 · 39 · 53 · 72 · 111 · 131
8 232 · 310 · 54 · 72 · 111 · 131 · 171
9 235 · 313 · 54 · 73 · 111 · 131 · 171 · 191
10 239 · 314 · 56 · 73 · 112 · 131 · 171 · 191
11 242 · 315 · 56 · 73 · 112 · 131 · 171 · 191 · 231
12 247 · 317 · 57 · 74 · 112 · 132 · 171 · 191 · 231
13 250 · 318 · 57 · 74 · 112 · 132 · 171 · 191 · 231
14 254 · 319 · 58 · 74 · 112 · 132 · 171 · 191 · 231 · 291
15 257 · 321 · 58 · 75 · 113 · 132 · 171 · 191 · 231 · 291 · 311
16 264 · 322 · 59 · 75 · 113 · 132 · 172 · 191 · 231 · 291 · 311
17 267 · 323 · 59 · 75 · 113 · 132 · 172 · 191 · 231 · 291 · 311
18 271 · 326 · 510 · 76 · 113 · 133 · 172 · 192 · 231 · 291 · 311 · 371
19 274 · 327 · 510 · 76 · 113 · 133 · 172 · 192 · 231 · 291 · 311 · 371
20 279 · 328 · 512 · 76 · 114 · 133 · 172 · 192 · 231 · 291 · 311 · 371 · 411
21 282 · 330 · 512 · 78 · 114 · 133 · 172 · 192 · 231 · 291 · 311 · 371 · 411 · 431
22 286 · 331 · 513 · 78 · 114 · 133 · 172 · 192 · 232 · 291 · 311 · 371 · 411 · 431
23 289 · 332 · 513 · 78 · 114 · 133 · 172 · 192 · 232 · 291 · 311 · 371 · 411 · 431 · 471
24 295 · 334 · 514 · 79 · 114 · 134 · 173 · 192 · 232 · 291 · 311 · 371 · 411 · 431 · 471
25 298 · 335 · 514 · 79 · 115 · 134 · 173 · 192 · 232 · 291 · 311 · 371 · 411 · 431 · 471

Table 3: G(n) (for p ̸= 3)
n G(n)

1 24 · 31
2 29 · 36 · 51 · 131
3 213 · 315 · 51 · 71 · 112 · 132
4 219 · 328 · 52 · 71 · 112 · 132 · 411 · 10931
5 223 · 345 · 52 · 71 · 114 · 133 · 411 · 611 · 7571 · 10931
6 228 · 366 · 53 · 72 · 114 · 134 · 231 · 411 · 611 · 731 · 7571 · 10931 · 38511
7 232 · 391 · 53 · 72 · 114 · 134 · 231 · 411 · 611 · 731 · 5471 · 7571 · 10932 · 38511 · 7971611
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