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Abstract

Let K and k be p-adic fields. Let L be the composite field of K and a certain Lubin-Tate
extension over k (including the case where L = K (ppe)). In this paper, we show that there
exists an explicitly described constant C', depending only on K, k and an integer g > 1, which
satisfies the following property: If A,k is a g-dimensional CM abelian variety, then the order
of the p-torsion subgroup of A(L) is bounded by C'. We also give a similar bound in the case
where L = K(* W) Applying our results, we study bounds of orders of torsion subgroups
of some CM abelian varieties over number fields with values in full cyclotomic fields.

1 Introduction

Let p be a prime number and K a p-adic field (= a finite extension of Q). It is a theorem of
Mattuck [Mat] that, for a g-dimensional abelian variety A over K and a finite extension L/K, the

Mordell-Weil group A(L) is isomorphic to the direct sum of Zg? @) and a finite group. Our
interest is to study various information about the torsion subgroup A(L)io; of A(L). For this,
Clark and Xarles [CX] gave an explicit upper bound of the order of A(L)tor of A(L) in terms of
p,g and some numerical invariants of L if A has anisotropic reduction. This includes the case
where A has potential good reduction and in this case the existence of a bound can be found in
some literatures (cf. [Si2], [Si3]). We consider the case where L/K is of infinite degree. There are
some situations in which the torsion part A(L)ior is finite. Suppose that A has potential good
reduction. It is a theorem of Imai [Im] that A(K (ppe))tor is finite. Here, K (pp) is the extension
field of K obtained by adjoining all p-power roots of unity. Moreover, Kubo and Taguchi showed
in [KT] that A(K(”VK))ier is also finite where K ( *V/K) is the extension field of K obtained by
adjoining all p-power roots of all elements of K. The author showed in [Oz2] that there exists a
?uniform” and ”theoretical” bound of the order of A(K("VK))o under the assumption that A
has complex multiplication. (Here we say that A has complex multiplication if there exists a ring
homomorphism F' — Q ®z EndxA for some algebraic number field F' of degree 2g.)

The main purpose of this paper is to give explicit upper bounds of the orders of A(K (tp))tor
and A(K("VK))ior for abelian varieties A/K with complex multiplication. For this, we should
note that to give an upper bound of the order of the prime-to-p part of A(K(fipe))tor i DOt SO
difficult. In fact, the reduction map gives an injection from the prime-to-p part of the group which
we want to study into certain rational points of the reduction A of A (if A has good reduction),
and the order of the target is bounded by the Weil bound. Hence the essential obstruction for our
purpose appears in a study of the p-part A(K (ppe))[p™] of A(K (thpo=))tor-

Let us state our main results. For a p-adic field £ and a uniformizer 7 of k, we denote by
kr/k the Lubin-Tate extension associated with 7 (that is, k, is the extension field of k obtained
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by adjoining all m-power torsion points of the Lubin-Tate formal group associated with 7). For
example, we have kr = Qp(pp~) if k = Q, and m = p. We set dr, := [L : Q,] for any p-adic field
L. For any integer n > 0, we set

®(n) := Max{m € Z | p(m) divides 2n},
H(n) = ged{1GSpy, (Z/NZ) | N > 3}.

Here, ¢ is the Euler’s totient function. There are some upper bounds related with H(n) and ®(n)
(see Section 5). It is a theorem of Silverberg [Sil] that we have H(n) < 2(9n)?" for any n > 0. It
follows from elementary arguments that we have ®(n) < 6n/n for n > 1. Furthermore, a lower
bound (5.3) of ¢ proved by Rosser and Schoenfeld [RS] gives ®(n) < 4nloglogn for n > 3%’

Theorem 1.1 (= a special case of Theorem 3.1). Let g > 0 be a positive integer. Let k be a p-adic
field with residue cardinality q and m a uniformizer of k. Assume the following conditions.

(i) qk_lNrk/QP(w) is a root of unity'; we denote by 0 < pu < p the minimum integer so that
(g "Ny, (m)# = 1, and
ii) dy is prime to (2g)!.
g

Then, for any g-dimensional abelian variety A over a p-adic field K with complex multiplication,
we have
A(Kkr)[p™] € Ap°]
where
C:=2¢%-(29)! - ®(g)H(g) - pt - dcr + 12¢* — 18g + 10.
In particular, we have

SA(K R[] < pC.

As an immediate consequence of the theorem above, we obtain a result for cyclotomic exten-
sions; see Corollary 3.7. Furthermore, the method of our proof of Theorem 1.1 can be applied to
the filed K( v K) discussed in Kubo and Taguchi, which gives a refinement of the main theorem
of [0z2].

Theorem 1.2. Let g > 0 be a positive integer. For any g-dimensional abelian variety A over a
p-adic field K with complex multiplication, we have

AK("VE)[p™] € A

where
C:=2¢" - (29)!- p'+*r® - ((g)H(g))* - p*»'*)d + 12g° — 189 + 10.

(Here, vy is the p-adic valuation normalized by v,(p) = 1.) In particular, we have
A(K ("VEK))[p™] < p™°.

We can consider some further topics. For example, we do not know what will happen if we
remove the CM assumption from above theorems. Our proofs in this paper deeply depend on the
theory of locally algebraic representations, which can be adapted only for abelian representations.
This is the main reason why we can not remove the CM assumption form our arguments. To
overcome this obstruction, it seems to be helpful for us to study the case of (not necessary CM)
elliptic curves. We will study this case as a future work. We are also interested in giving the list
of the groups that appears as A(Kky)[p>] or A(K("VK))[p>]. However, this should be quite
difficult; the author does not know such classification results even for A(K)[p™].

Combining the cyclotomic case of Theorem 1.1 and Ribet’s arguments in [KL], we can obtain
a result on a bound of the order of the torsion subgroup of some CM abelian variety defined over a
number field with values in full cyclotomic fields. (Here, a number field is a finite extension of Q.)

IThis condition is equivalent to say that some finite extension of kr contains Qp(upee) (cf. [Ozl, Lemma 2.7

@)-



Theorem 1.3. Let g > 0 be an integer. Let K be a number field of degree d and denote by h
the narrow class number of K. Let K(u~) be the field obtained by adjoining to K all roots of
unity. Let A be a g-dimensional abelian variety over K with complex multiplication which has good
reduction everywhere. Then, we have

A(K (poo))tor € A[N]

where
) 2g°-(29)!-®(g) H(g)-dh+12g° —18g+10

v= (1T

dh
Here, p ranges over the prime numbers such that either p < (1 + V2 )29 or p is ramified in K.

We should note that Chou gave in [Ch] the complete list of the groups that appears as
A(Q(too))tor as A ranges over all elliptic curves defined over Q. For CM elliptic curves A over a
number field K, more precise observations for the order of A(K (tieo))tor than ours are studied in
[CCM].

Acknowledgments. The author would like to thank Yuichiro Taguchi for useful discussion and
correspondence to the proof of our main results. The author would like to thank Manabu Yoshida
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Notation : For any perfect field F', we denote by G the absolute Galois group of F. In this
paper, a p-adic field is a finite extension of Q,. If F' is an algebraic extension of Q,, we denote by
Or and my the ring of integers of F' and its maximal ideal, respectively. We also denote by F2P
the maximal abelian extension of F' (in a fixed algebraic closure of F'). We put dp = [F : Q,] if F’
is a p-adic field. For an algebraic extension F'/F, we denote by epr/p and fp/ p the ramification
index of F'/F and the extension degree of the residue field extension of F'/F, respectively. We
set ep := ep/g, and fr := fp/q,, and also set gr = p!F. Finally, we denote by I'z the set of
Q,-algebra embeddings of F' into a (fixed) algebraic closure @p of Q.

2 Evaluations of some p-adic valuations for characters

We fix an algebraic closure @p of Q,. Throughout this section, we assume that all p-adic fields are
subfields of @p. Denote by v, the p-adic valuation normalized by v,(p) = 1. For any continuous
character ¢ of G, we often regard 9 as a character of Gal(K*"/K). We denote by Artg the
local Artin map K* — Gal(K®*/K) with arithmetic normalization. We set 1 := 1 o Artg.
We denote by K* the profinite_completion of K*. Note that the local Artin map induces a
topological isomorphism Artg: K* = Gal(K2"/K). For a uniformizer 7x of K , we denote by
Xrx 1 Gk — O the Lubin-Tate character associated with mx. By definition, the character x
is characterized by X x(TK) =1 and Xy, x(z) = 27! for any x € OF. Let 7 be a uniformizer
of k and denote by k, the Lubin-Tate extension of k associated with «. The field corresponding
to the kernel of the Lubin-Tate character x,: Gx — O} is kr, and k, is a totally ramified abelian
extension of k.



Proposition 2.1. Let 91,...,%,: Gxg — M* be continuous characters. Then we have

Min {Z vp(Yi(o) —1) | o € Gmﬂ}

i=1

< Min {Z (Vi kr(w) —1) |w e Nr;(i/k(wf“/’fz)} .

i=1
Proof. This is Proposition 3 of [0z2] but we include a proof here for the sake of completeness. Let M
be the maximal unramified extension of k contained in K'k. The group Art; ' (Gal(k*"/M)) contains
Art; H(Gal(k*/k™)) = O). Furthermore, Art; }(Gal(k*/M)) is a subgroup of & = 7% x O
of index [M : k] = fgy/x. Thus it holds that Art; '(Gal(k®®/M)) = wfxr/+Z x OF. Since we
have Art;'(Gal(k*®/k.)) = 7%, we obtain Art; '(Gal(k®®/Mk,)) = wnfxr/+2. If we denote by
Resgy/r the natural restriction map from Gal((Kk)*/Kk) to Gal(k*/k), it is not difficult to
check Resyy . (Gal(k*®/Mky)) = Gal((Kk)*/Kky). Thus we find Artye, (Gal((Kk)**/Kkr)) =

er_ﬁﬂ/k(ﬂf”/kz). Now the lemma follows from

Min {Zlvp(q/zi(a) —1)|oe GKk,,}

= Min {Z vp (Vi 0 Aty (o) — 1) | o € Gal((Kk)ab/Kkﬂ)} .

i=1
O

We recall an observation of Conrad. We denote by K the maximal unramified extension of
Q, contained in K and set DX (x) 1= (Buis ®g, *)°%. We denote by K* the Weil restriction
RGSK/@,, ((Grm)

Proposition 2.2. Let ¢: Gxg — M* be a continuous character.

(1) M(v) is crystalline if and only if there exists a (necessarily unique) Q,-homomorphism ag: K>
M such that Y and Yag (on Qp,-points) coincides on O (C K*(Qyp)).

(2) Assume that M(v) is crystalline and let 1 be as in (1). (Note that M(¢~1) is also crys-
talline.) Then, the filtered p-module DE, (M (¢=1)) = (Benis ®g, M (¢ 1))¢% over K is free of

rank 1 over Ko ®q, M and its Ko-linear endomorphism ©f% is given by the action of the product
Vi (TK) -1/);1;(771() € M*. Here, g is any uniformizer of K.

Proof. This is Proposition B.4 of [Co]. O

Let ¢¥: Gg — M be a crystalline character. For any o € 'y, let xonr: Iopr — oM™ be the
restriction to the inertia I, s of the Lubin-Tate character associated with any choice of uniformizer
of oM (it depends on the choice of a uniformizer of oM, but its restriction to the inertia subgroup
does not). Assume that K contains the Galois Closure of M/Q,,. Then, we have

_ he
Y= H P

o€l
on the inertia Ix for some integer h,. Equivalently, the character 1,1, on Q,-points coincides with
[Tyer,, 0o Nr;(’};M. Note that {h, | 0 € T'ps} is the set of Hodge-Tate weights of M (1)), that

is, C ®@q, M(¥) ~ @oer,, C(hy) where C is the completion of Q,.
For integers d, h and a p-adic field M, we define a constant C(d, M, h) by

C(d, M, h) == vy(d/das) + h+ % (dM +up(enr) — i + 0, (2)(das — 1)) . (2.1)



Theorem 2.3. Letq,...,%,: Gg — M* be crystalline characters and h > 0 an integer. Assume
that M is a Galois extension of Q, and K contains M. Suppose that, for each i, we have

- Lo
ol

on the inertia Ir; thus {hi, | 0 € Ty} is the Hodge-Tate weights of M(1;). We assume the
following conditions.

(i) {hi,s | 0 € Tp} contains at least two different integers for each i. (In particular, we have

M#Q,)
(i) We have Min{vy(hi,c — hir) | 0,7 € Tpr} < h for each i.

(1) There exists an element & € ker Nrps g, with the property that, for every 1 <i < n, it holds
that

1+0,(2) < vp (i, k(@)1 = 1) < 8y + Cldi, M, h). (2.2)
Here,
P 0 ifi=1,2,
A=\ 2i—-5  ifi>3.

(2) Let & be as in (1). For any x € K*, there exists an integer 0 < s(z) < n with the property
that, for every 1 <i <mn, it holds that

e(r)

(1/% K(
Proof. Take an element x € Oy such that Opr = Zy[z]. Weset p :=porp’ :=4ifp#£2o0rp=2,
respectively, and put z’ = p'z. Set m], := dx/ar(hrro — hro) for 1 <r <nand o,7 € I'y;. We

also set
T —1_/\6—1
yle= Y, mp (o)
oel'

for 1 < ¢ < dp. (Note that y;; =0.) Set

)7t =1) <n+ 6 + Cldx, M, h). (23)

we:=exp((2)!) and W = e
wy

for any 1 < ¢ < dp and 7 € I'yy. It holds wy € ker Nryy/q, by construction.
Lemma 2.4. We have exp(y],) = ¢r x(wj)™"
Proof. We see

di/m
er(wé H o ONrK/M We hro — ( H 0,—1 hrc’) )

o€l m ocly

3 1 o dr/m 1 hrro dr/m
We also have ¢, i (Twe) ™! = (HaerM o trw,” ) = (HaerM o tw, ) . Thus we have

dr /M
» -1, h7 ro—hr.o _ —1 Mg
i (W) )™ o = o w, M.

c€lm oely

On the other hand, we have

exp(y;e):exp(z: m:,a(U z') ) H exp((o~ 1z )h) H o tw m’""’.

o€l o€l ocly

Thus we obtain the lemma. O



We furthermore need the following evaluation.

Lemma 2.5. For each 1 < r <n, there exist 7, € I'ps and an integer 2 < £, < dp; such that
’U;D(y:,rzr) S C(dKa Ma h)

Proof. In this proof, we fix r. By the assumption (i), there exist 71,72 € I'ps such that h, ., #
hr r,. We choose such 7 and 75 so that v,(h, -, — Ry r,) = Min{v,(hy e — by ) | 0,7 € Tpr}. Set
T = 727'1_1 € Iy We write I'yy = {71, 72,...,74,, }- Note that my . = di /s (Pyzry — By 7)) is ot
zero. We denote by X € My(Oy;) the matrix whose (i, j)-component is (7, *2’)?~'. Then we have

(Win o W) = (min o min, )X (2.4)
. . _ _ (dp=1) _
and the determinant det X of X is [, ;4 (7; Yol — 7ty = (p’)de+1 [Ticici<an (7 Yy —

77 'x). We also have

Up H (Tj_lx - Ti_ll‘) = Z Up (Tj_ll‘ - Ti_la:)

1<i<j<dn 1<i<j<das
1
_ Z _1 —1
= = 'Up (7_] T — T’L I)
1<i,j<dar i
dnr

dr 1
= T’UP(DM/QP> S 7 (1 +Up(€M) — W) .

(cf. [Se, Chapter 3, Section 6, Proposition 13]), where Dyy/q, is the differential of M/Q,. We find
das 1

vp(det X) < > dy + vp(enr) — o +vp(2)(dar — 1) . (2.5)
M

By (2.4), we have m”_ det X = Z?fl Y. ox¢ for some zy € Oy, which gives the fact that there

TT1

exists an integer £, = £ with the property that v,(y; ,) < v,(m] ;. det X). By (2.5), we have
Up(y:,e) < vp(dK/M) + Up(hr,ﬁ - hr,m) + U:D(det X) < C(dK> M, h)
as desired. We remark that £ is not equal to 1 since y;  is zero. O

Now we return to the proof of Theorem 2.3. Take 7,- and ¢, as in Lemma 2.5 with the additional
condition that
vp(yy7y,) = Min{vp(yr ) | 7 € T, 2 < € < dug} (2.6)

Here we consider an element & € ker Nrp/q, which is of the form & = [T'_; (w;")®, where s, is
defined inductively by the following.

(07 1) lf Up(y;lll) = UP(yI?ZQ)ﬂ
(51,82) = (1,0) %f “p(y1,121> # Up(yl,zzz) and Up(yz,lzl) = Up(yQ?ZQ)v
(1,1) if ”p(y1,1z1> # Up(yl,zég) and Up(yz,lzl) # Up(y2?z2)~

55 = { D %f vp(slyg[l + 529;2@2) # Up(il?yg;,gzs)’
if vp(slyg,lel + 5293,222) = Up(py3?23)~
For r > 4,
. { pser i oo(Eim1 839, ) # 0o(Psr-ay7y, ).
P Sr—1 if Up(ijl Sjyrjej) = Up(ps,._ly:”zr).



We calim that we have

n

1+vp(2) <wp <Z Sryffgr> < 6@ + Cld, M, h)

r=1
for any i, where d;) is as in the statement (1). The inequality 1 + v,(2) < v, (ZZ=1 sry?h) is

clear since we always have 1+ v,(2) < v,(y],) by definition of y7,. We show v, (Z?:l sry&) <
d¢s) + C(dr, M, h) by induction on i.
e Suppose either 4 = 1 or ¢ = 2. By (2.6) and the inequality 0 < wvp(s,) for r > 3, it
is not difficult to check v, (Zle ST%T,},,.) = vp(y;y,). Furthermore, we have v,(y;y,) <
C(dg, M, h) = 04y + C(dx, M, h) by Lemma 2.5.

e Suppose i > 3. By definition of s; we have v, (Zi;ll sryzrgr) # vp(siy;y,)- We also have

Up (Z;L:l SryiT,Te,.> = vp(8:y;y,) since vp(s:y;y,) < vp(sry;y, ) for i <r. Hence, it follows from

Lemma 2.5 that we have

n 1—1
Up (Z sry&r> = Min {’Up (Z sry;2r> ,vp(siyziei)}

r=1 r=1

< vp(psi—1y;y,) < 1+ vp(si—1) + Cldk, M, h)

if ¢ > 4. Since we have v,(s;—1) < 2(i — 3) if ¢ > 4, the claim for ¢ > 4 follows. The
claim for ¢ = 3 follows by a similar manner; we have v, (Z:f:l srygfér) < vp(pysy,) <
1+ C(dg,M,h) =63+ C(dr, M, h).

By construction of @ and Lemma 2.4, we see
n n n
Y@ = [Twar(i) ™ = [T e (s, ) = o (Z y) |
r=1 r=1 r=1

Thus we find v, (¢; k(@)1 — 1) = v, (Zle sry;}J . Therefore, the claim above gives the state-
ment (1) of Theorem (2.3).

We show (2). We set m; := ; ¢(z)"! — 1 and 01(3) = ;i (WP")™1 — 1 for any s > 0. It follows
from the condition v, (¢; x(@)™' — 1) > 1 + v,(2) that the equality vp(ﬁgs)) =s+ vp(ﬁgo)) holds.
For each 1 < i < n, there exists at most only one integer s > 0 so that vy(m;) = vp(Gl(S)) since
{vp(ﬂgs))}s is strictly increasing. Hence, there exists an integer 0 < s(z) < n with the property
that vy, (m;) # vp(ef(“’))) for every 1 < i < n (by "Pigeonhole principle”). With this choice of s(x),
we obtain vp(wiyK(:rd)ps(m))*l —1) = vp(m; + 91(5(1)) + mﬂfs(m))) < vp(ﬂfn)) =n-+ vp(GEO)). This
finishes the proof of (2). O

3 Proof of main theorems

The main purpose of this section is to show Theorems 1.1 and 1.2 in Introduction. As for Theorem
1.1, we show a slightly refined statement as follows.

Theorem 3.1. Let g > 0 be a positive integer. Let k be a p-adic field with residue cardinality qp
and © a uniformizer of k. Put p’ =p orp’ =4 if p# 2 or p = 2, respectively. Let ;1 > 1 be the
smallest integer® so that

(qllerk/Qp (m))* =1 mod p’.

21f q,ZINr;C /Qp(w) is a root of unity, the constant u here coincides with p appeared in Theorem 1.1.



Assume the following conditions>.

(i) vp((gy 'Nrgsq, (M) —1) > g (29)! - ®(9)H(g) - pt - dicisifi and
(ii) dy is prime to (2g)!.

Then, for any g-dimensional abelian variety A over a p-adic field K with complex multiplication,
we have

A(Kkx)[p™] € Alp°]

where
C :=2g%(29)! - ®(9)H(g) - pu - dgcy + 12g* — 18g + 10.

In particular, we have
BA(K k) [p] < p*C.

Our proofs of Theorems 3.1 and 1.2 proceed by similar methods. As in the previous section,
we fix an algebraic closure Q, of Q, and suppose that K is a subfield of Q,. In this section, we
often use the following technical constants:

Lg(m) := [log,(1+p*)%],

Cm, M} = v, <$V[) h+ %M (dM +up(ens) — é 4 0y(2)(das — 1)) .

Here, m > 1 and h > 0 are integers and M is a p-adic field.

Remark 3.2. (1) We have mg < Ly(m) < g(m + 1+ v,(2)) for any prime p and m > 1, and we
also have Ly(m) < g(m + 1) if (p,m) # (2,1),(2,2).
(2) Moreover, we have*

Ly(m) =mg for m > 8g.

This can be checked as follows: It suffices to show (1+p% )29 < p™9+! for m > 8¢. This inequality

is equivalent to (14 p~%)2 < p. Thus it is enough to show (142~ 2")29 < 2 where mg := 8g.
By inequalities 2¢g < 229 and (29) < 2%9 for 0 < r < 2g, we find

mo 2g 29 1 % 1 mTO 1 %_49
(1+2*T) :1+Z(2T9)<2> <1+29-229<2) <1+<2> _9
r=1

as desired.

3.1 Special cases

We consider Theorem 3.1 under some additional hypothesis. In this section, we show
Proposition 3.3. Let the situation be as in Theorem 3.1 except assuming not (i) but
(1) vp((ay Nrgyg, (m)* — 1) > Lg((29)! - 1o~ dicrnfr)-

Moreover, we assume that A has good reduction over K and all the endomorphisms of A are defined
over K. Put

_ (29)! N
Cy(K, 1) = vp{dicn) + 2 ((29)! + 1((29)1) + 2,(2)((29)! — 1)),

A!](K7 k) = MaX{Cg(K’ k)7Lg((29)l TH de/kfk)} .

3The condition (i) here depends on the choice of K. However, the author hopes that this condition would be
replaced with certain one which does not depend on K as (i) in Theorem 1.1.
4The evaluation 8g here is “rough” but it is enough for our proofs.



Then, we have

A(Kkx)[p™] € Alp°]

where
C =297, (K, k) + 12¢* — 18g + 10.

Proof. Put T = T,(A) and V = V,(A) to simplify notation. Let p: Gx — GLz,(T) be the
continuous homomorphism obtained by the Gx-action on T. Fix an isomorphism ¢: 7'~ Z;‘,ﬂg of
Zp-modules. We have an isomorphism i: GLgz,(T') ~ GLay(Z,) relative to .. We abuse notation
by writing p for the composite map G — G Lz, (T) =~ GLyy(Z,) of p and i. Now let P € T and
denote by P the image of P in T/p"T. By definition, we have t(cP) = p(o)i(P) for o € Gk.
Suppose that P € (T/p"T)%x#=. This implies ¢ P — P € p"T for any ¢ € Gy,_. This is equivalent
to say that (p(c) — E)u(P) € p"Z$?9, and this in particular implies det(p(0) — E)u(P) € p"Z?9
for any o € Gg,,_. Hence we find det(p(c) — E)P € p"T for any o € Ggy,. Put

¢ = Min{v,(det(p(o) — E))) | 0 € Gk, }

Then we see P € p"~°T (if c is finite and n > ¢) and this shows (T'/p"T)%x#= C p"~°T/p"T. This
implies an inequality
A(Kkr)[p™] C Alp°] 3.1)
if ¢ is finite.
On the other hand, let us denote by F' the field of complex multiplication of A. We know that
V is a free F' ®g Qp-module of rank one and the G k-action on V' commutes with F' ®g Q,-action.
Let H?:l F; denote the decomposition of F' ®g Q) into a finite product of p-adic fields. This
induces a decomposition V' ~ &7, V; of Q,[Gk]-modules. Each V; is equipped with a structure
of one dimensional F;-modules and the Gi-action on V; commutes with Fj-action. Let p;: Gg —
GLq, (Vi) be the homomorphism obtained by the G'x-action on V;. Since p; is abelian, it follows

from the Shur’s lemma that we have (V; ®q, Q,)* ~ @;lfl@p (;,;) for some continuous characters

Vi Gg — @; . Here, the subscript ”ss” stands for the semi-simplification. As is well-known, 1; ;
satisfies the following properties (since the G k-action on V; is given by a character G — F.*):

(a) ¥iq1,... s Yi,ar, are Qp-conjugate with each other, that is, ¥; x = 740 t; ¢ for some 710 € Go,,
and

(b) i1, .., Yiap have values in a p-adic field M; (in the fixed algebraic closure Q, of Q,) which
is Qp-isomorphic® to the Galois closure of F;/Q, (in an algebraic closure of F;). We remark
that dpy, divides dp,!.

In particular, we have
vp(det pi(0) — E) = dp,vp(¢i(0) — 1),

where v; = ;1. Let M be the composite field of M;,..., M,, and we regard ¥1,...,1, as
characters of G with values in M*; ¢;: Gxg — M*. The field M is a Galois extension of Q, in

Q, and dy divides dp, !dp,!- - - dp,!. Since Y7 | dp, = 2g, we find

da | (29)!. (3.2)

(Here, we recall that the product of consecutive n natural numbers is divided by n! for any natural
number n.) In particular, we have M Nk = Q,, since dy, is prime to (2¢)!, and then we obtain

ker Nryr/q, C ker Nrpsp/p C ker Nrge ) 1/

5Note that K lives in our fixed algebraic closure @p of Qp but F; does not lives in @p.



Here, K, is the composite KM of K and M. It follows from Proposition 2.1 that we obtain

i=1

¢ < Min {v,(det(p(o) — E))) | 0 € Grpk, } = Min {Z dp,vp,(Yi(o) —1) | o € GKM;CW}

< Min {Z dFi’Up(il)i’KMk(Ww)_l -1 |we kerNrKMk/k}
i=1

< Min {Z dpivp(ﬂ)i7KMk(7Tw)71 — 1) | w € kerNrM/Qp}

=1

< Min {Z dpop(Ph g, p(mrw) ™t =1) [we kerNrM/Qp} . (3.3)

i=1

Here, p is the integer appeared in the statement of Theorem 3.1. Note that 1; is a crystalline
character since A has good reduction over K. By rearranging the numbering of subscripts, we may
suppose the following situation for some 0 < r < n.

(I) For 1 <4 <r, the set of the Hodge-Tate weights of M (¢,) is {0, 1}.
(IT) For r < i < n, the set of the Hodge-Tate weights of M (v;) is either {1} or {0}.

Lemma 3.4. Forr <i <n and any w € ker Nryps/q,, we have

Op (Y} g 1 (1) T = 1) < Lg((29)! - dicresn S - 1)-

Proof. In this proof we set L := Kjyk. We know that the morphism ); aig: L* — M* corre-
sponding to 1;|g, is trivial or er/lQp on Qp-points. This in particular gives ¢; (w) = 1. Since

e _ . . . . .
7TLL/ "7~ is a p-adic unit for any uniformizer 7;, of L, we find

Yin(mw) ™t =y (m) T = (g, R

= QJEL/IC : 7vzji,alg(7'r)7l

where o; := 9; 1,(7)Vi.a1(7) "' Denote by L’ the unramified extension of L of degree Her k-

(I) Suppose that the set of the Hodge-Tate weights of M (1;) is {0}. In this case 9); aig is trivial
and thus we have 9!} (mw)~! = a; "“*/*. Tt follows from Lemma 9 of [0z2] that ¢¥ (mw)™! is
a unit root of the characteristic polynomial f(7T') of the geometric Frobenius endomorphism of
Ayp,,. Since f(1) = $A(F,,,), we see vp(wﬁfL(ww)_l —1) < v(#AF,,,)) < [logp ﬁA(]FqL,)]. It
follows from the Weil bound that v, (¢}, (mw) ™" = 1) < Ly(fr). Since we have fr, = pep i fr =
dr/gk - 1 drre/efe < (29)! - 1 - dgryife- we obtain the desired inequality.

(IT) Suppose that the set of the Hodge-Tate weights of M(4);) is {1}. In this case ¥; az is
er/l@p on Qp-points. If we set 5 := qk_lNrk/Qp (), we find

£ (rw) ™t = 1= (a7 Ny g, (m)emyere — 1

— ((aifqu)MeL/k _ 1)BMdL/k + (BNdL/k _ 1)

It again follows from Lemma 9 of [0z2] that (a; 'qr)"®t/F is a unit root of the characteristic
polynomial fY(T') of the geometric Frobenius endomorphism of AV g ,. Since f¥(1) = §AV(F,,,),
the same argument as in (T) shows that v, ((c; *qp)"*2/% — 1) < Ly(frr) < Ly((29)! - - dick/efr)-
In particular, we have v, (8#%/% — 1) > v,((a; 'qr)"2/% — 1) by the assumption (i)’. Since 3 is
a p-adic unit, we obtain v, (¥}’ (rw) ™" 1) = vp((ag tqr)rerrn — 1) < Ly((29)! - g+ dicayn fr) as
desired. O
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By (3.3) and the lemma, in the case where r = 0, we have

c< ZdFiLg((Qg)! g dcryifi) = 29Lg((29)! - 1 - drer i fro)- (3.4)
i=1

In the rest of the proof, we assume that » > 0. By (3.3) and the lemma again, we have

i=1

¢ < Min {Z dpivp(wi*fKMk(yrw)*l -1 ]we kerNrM/Qp}

+ Lg((29)! - - dicipnfi) Y, dp-

i=r+1

Here we remark that v,(u) = 0 and the Hodge-Tate weights of ¢ for each 1 < ¢ < r consist
of 0 and p. Hence, applying Theorem 2.3 to the set of characters ¢4, ..., ¢¥#: Gg,x — M, an
element z = 7 and h = 0, there exists an element w € ker Nrjs/q, and an integer 0 < s = s(m) <r
as in the theorem. Then we obtain

cs ZdFi“P(wﬁKMk(”@ps)_l = 1)+ Lg((29)' - o - dgciyic fr) Z dr,

i=1 i=r+1
< ZdFi (T + 5(i) + C(dKMka M, O)) + Lg((2g)! T de/kfk) Z dFi
1=1 1=r+1

S QQA() -+ Zdﬂ(?’ + 5(1))

i=1
where Ag := Max {C(dg,,k, M,0), Ly((29)! - 1+ dcr /i fr) }- Since dyy divides (2g)!, we also have

Cldcans M.0) < wyldicr) + 22 ((2)1 42, ((20)) + 0y 2)((29) - 1).

Thus, for the constant A,(K, k) defined in the statement of the proposition, we obtain Ag <
Ag(K, k) and ¢ < 2gAg(K, k) + >0, dp,(r 4 6(;)).
o If r <2, we have Y\ dp,(r+6¢;)) = >, dp,r <r-2g <dg.
o Ifr > 2, we have Z::1 dFi (r+6(i)) =r 22:1 dFi-l-E:;n::3 dpﬁ(” <n Z?:l dFi-i-Z?:g dFi (2”—
5)<n-29+ 2n—5)> 1, dr, —2) <2g-2g+ (49 —5) - (29 — 2) = 12¢* — 18¢g + 10.
Therefore, for any r > 0, we find
c <297, (K, k) + 12g° — 18¢ + 10.

Note that this inequality holds also for the case » = 0 by (3.4). Now the proposition follows from
(3.1). O

3.2 General cases

We show Theorems 3.1 and 1.2. For this, we need the following observations given by Serre-Tate
[ST] and Silverberg [Sil].

Theorem 3.5. Let A be a g-dimensional abelian variety over K.

(1) Putm =3 orm =4 if p# 3 or p =3, respectively. Then A has semi-stable reduction over
K(Alm]) and all the endomorphisms of A are defined over K(A[m]).

(2) Let L be the intersection of the fields K(A[N]) for all integers N > 2. Then, all the endomor-
phisms of A are defined over L and [L : K| divides H(g).

(3) Assume that A has potential good reduction. Let payg: Gx — GLz,(Ty(A)) be the continuous
homomorphism defined by the G -action on the Tate module Ty(A) for any prime £.

11



(3-1) For any prime € not equal to p, let Hy be the kernel of the restriction of pas to Ix. Then
Hy is an open subgroup of Iy, which is independent of the choice of £. Moreover, if we set
¢ := [Ix : Hyl, then there exists a finite totally ramified extension L/K of degree ¢ such that
A has good reduction over L.

(3-2) If A has complex multiplication and all the endomorphisms of A are defined over K, then
the constant ¢ above satisfies ¢ < ®(g).

(4) Assume that A has complex multiplication (over K). Then, there exists a finite extension LK
of degree at most ®(g)H (g) such that A has good reduction over L and all the endomorphisms of
A are defined over L.

Proof. (1) follows from [Sil, Theorem 4.1] and the Raynaud’s criterion of semi-stable reduction
[Gr, Proposition 4.7]. (2) is [Sil, Theorem 4.1], and (4) is an immediate consequence of (2) and (3)
since A must have potential good reduction under the condition that A has complex multiplication.
The first statement related to Hy in (3-1) is [ST, §2, Theorem 2, p.496]. The rest assertions of
(3) are also essentially consequences of results given in §2 and §4 of [ST] but it is not directly
mentioned in loc., cit. Thus we give a proof here, just in case. The group H is a closed normal
subgroup of G g, which is also open in Ix. Let I' be the closure of the subgroup of Gk generated
by any choice of a lift of the gx-th Frobenius element in G, . The projection Gx — G, gives
an isomorphism of I' onto GF‘IK; in particular, Gg is the semi-direct product of I' and Ix. Let
Kr/K be the field extension (of infinite degree) corresponding to I' C G, and let M /K" be the
finite extension corresponding to H := Hy C Ix. Note that A has good reduction over M. Now we
set L :== Kpr N M. Then L/K is totally ramified since so is Kp/K. Furthermore, it is immediate
to check HI' N Ix = H; this shows LK" = M. Hence we obtain that A has good reduction over
Land [L: K] =[M : K"] = c. This shows (3-1). Next we show (3-2). Let F' be the number field
of degree 2g of complex multiplication of A. Then V;(A) has a structure of free F ®g Q; module
of rank one and the Gx-action on V;(A) commutes with F' ®g Q. Thus we may consider p4 ¢ as
a character Gg — (F ®g Q¢)*. Moreover, the image of this character restricted to Ix has values
in the group pu(F) of roots of unity contained in F by [ST, §4, Theorem 6, p.503]. Thus we obtain
the fact that ¢ divides the order m of p(F). On the other hand, since pu,, is a subset of F, we have
©(m) | 2g. Therefore, we obtain ¢ < m < ®(g) as desired. O

Now we are ready to show our main theorems. First we show Theorem 3.1.

Proof of Theorem 3.1. Let A be as in the theorem. Since A has complex multiplication, it follows
from Theorem 3.5 (4) that there exists a finite extension L/K such that d,x < ®(g9)H(g), A has
good reduction over L and all the endomorphisms of A are defined over L. In addition, we have

vp((@y Nryyg, () = 1) > g+ (29)! @(9)H(g) - 1o~ dicryifu = Lg((29)! - ®(9)H (9) - 1+ dicrprefi) =
Ly((29)! - o - drgsr fr) by the assumption (i) and Remark 3.2 (2). Thus we can apply Proposition
3.3 to A/L; we have

A(Lkr)[p™]) € AP
where C" = 2gA (L, k) + 12¢*> — 18¢g + 10. Here,

_ (29)! N
ColL k) = vpldz) + 2= ((29)! + vp((29)1) + 0 (2)((29)! — 1)

Ag(Lv k) = Max {Og(Lﬂ k)v Lg((Qg)' e de/kfk)} .

Note that we have v, (drx) < drr < ®(9)H(g)-dxr and Lg((29)! p-dri/efe) < g-(29)!-®(9)H(g)-
1 - dig. Therefore, it suffices to show

Bg)H(9) dri+ 2 ((29) 4, ((20)1) + (2)((20)! 1)) < g (29)! - B(o)H () - 1

for the proof but this is clear. O
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Remark 3.6. In the above proof of Theorem 3.1, we referred the field extension L/K of Theorem
3.5 (4) and the upper bound ®(g)H(g) of [L : K]. By Theorem 3.5 (1), we may refer the field
K (A[m]) instead of the above L. Since we have a natural embedding from Gal(K(A[m])/K) into
GL(A[m]) ~ GL9y(Z/mZ), we obtain a bound for the extension degree of K(A[m])/K; we have
(K (Afm])/K] < Glg), where

[, (3% - 37) if p#3,

G(n) := 8GLap(Z/MmZ) = { oin? H?ﬁ(;l@zn i) it p=3.

for n > 0. Note that we have G(n) < m*"”. It is not difficult to check the inequalities ®(1)H (1) >
G(1) and ®(g)H (g) < G(g) for g > 1 (see Section 5 below). Hence, only in the case g = 1 of elliptic
curves, we can obtain smaller bound than that given in Theorem 3.1 by replacing ®(g)H (g) with

G(1).

Applying Theorem 1.1 with k¥ = Q, and 7 = p, we immediately obtain the following.
Corollary 3.7. Let A be a g-dimensional abelian variety over a p-adic field K with complex
multiplication. Then we have

A(K (ip=))[p™] © A€
where
C:=2g%(29)!- ®(9)H(g) - drc + 12g*> — 189 + 10

In particular, we have
BACK (1)) [p™] < p*9°.

Next we show Theorem 1.2.

Proof of Theorem 1.2. We follow essentially the same argument as that of Theorem 3.1. Put
K =K("VK).

Step 1. First we consider the case where A has good reduction over K and all the endomor-
phisms of A are defined over K. Put v = v,(dx) + 1 + v,(2) and

_ 29 o0 ! -
Cg(K) = vp(dr) + v+ == ((29)! + vp((29)) + vp(2)((29)! = 1)) ,

Ag(K) = Max {Cy(K), Ly((29)! - p” - dic)} -
Following the proof of Proposition 3.3, we show
AK)p™] € A7 (3:5)

where C" := 2gA,(K) + 12¢% — 18¢g 4 10. Let p: Gx — GLyz, (T,(A)) ~ GLay(Zy), M/Q, and
¥1,...,%n: Gk — M* be as in the proof of Proposition 3.3. If we denote by K, the maximal
abelian extension of K contained in K, all the points of A(K)[p™] are in fact defined over K,
since p is abelian. Thus, setting ¢ := Min{v,(det(p(0) — E))) | 0 € G}, we find

A(K)[p™] = A(Ka)[p™] € Alp°] (3.6)

if c is finite (see arguments just above (3.1)). On the other hand, we set G := Gal(K /K) and
H = Gal(K/K(up=)). Let x,: Gk — Z, be the p-adic cyclotomic character. Since we have

oro~ ! =% for any 0 € G and 7 € H, we see (G,G) D (G, H) D HX»(@)~1 Hence we have a
natural surjection

H/HX*@~1 o H/(G,G) = Gal(K,p/K (<)) for any o € G. (3.7)

Lemma 3.8. We have x,(0¢) —1 = p” for some oy € G.
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Proof. We denote by K’ the field K(pp) or K(pa) if p # 2 or p = 2, respectively. If we denote
by p’ the order of the set of p-power roots of unity in K’, we see K' N Qp(pp) = Qp(ppe) and
thus x,(Gk') = 1+ p’Z,. Furthermore, since [Q,(y,¢) : Q] divides [K’ : K|[K : Q,], we see
p'~17(2) | dg. Hence we obtain x,(Gx/) D 1+ p”Z, and the lemma follows. O

By the lemma above and (3.7), we see that Gal(Ku,/K (jip=)) is of exponent p”, that is,
0 € Gg(u,~) implies o’ € Gg &.,- This shows ¢ < Min{v,(det(p (o) —E))) | o € G K (ppoo) }-
Mimicking the arguments for inequalities (3.3), we find

¢ < Min {deivp(z/}zVKM(ww)_l -1)|we kerNrM/Qp} :

i=1

Now the inequality (3.6) follows by completely the same method as the proof of Proposition 3.3
(with replacing the pair (k, u) there with (Qp,p")).

Step 2. Next we consider the general case. Since A has complex multiplication, it follows from
Theorem 3.5 (4) that there exists a finite extension L/K such that dj,;x < ®(g)H(g), A has good
reduction over L and all the endomorphisms of A are defined over L. Thus we can apply the result
of Step 1 to A/L; we have

A(K)[p™] € AL)[p™] € Ap°"]
where C” := 2gA,4(L) + 12g% — 18¢ + 10. We find

Ly((29)! - por ¥ 00 ) = Ly((2g)! - p*Hor®) - ”P(dL/K)dL/K () d )
< Ly((29)! P - (dy ) )
< g (2g)1- P - (B(g) H(g))? - 7).

(For the last equality, see Remark 3.2 (2).) Now Theorem 1.2 immediately follows by A,(L) <
g (29)! pttr® - (@(g)H(g))? - pr ) d . O

One of the keys for our arguments above is a theory of locally algebraic representations. Thus
our method essentially works also for abelian varieties A with the property that the G g-action on
the semi-simplification of V},(A4) ®q, @p is abelian. For example, this is the case where A has good
ordinary reduction.

Proposition 3.9. Let g > 0 be a positive integer. Let K and k be p-adic fields. Let m be a
uniformizer of k. Assume that qllerk/Qp (m) is a root of unity; we denote by 0 < p < p the

minimum integer so that (qk_lNr;g/Qp (m))* = 1. Then, for any g-dimensional abelian variety A
over K with good ordinary reduction, we have

A(Kk‘,r)[poo} C A[p2ng(l"de/kfk)].
In particular, we have

ﬁA(KkTr)[pOO] < p492Lg(/tde/kfk) < p493(l"de/kfk+1+7)p(2)).

Proof. Put V= V,(A), T = T,(A) and ¢ = Min{vy(det(p(c) — E))) | 0 € Gky, }. By the same
argument as the beginning of the proof of Proposition 3.3, we obtain

A(Kkr)[p™] < Alp©] (3-8)

if ¢ is finite. Since A has good ordinary reduction, we have an exact sequence 0 — Vi — V —
Vo — 0 of Q,[Gk]-modules with the following properties.

(i) Vi @ W ®q, Qu(1) for some unramified representation W of G'g, and
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(ii) V4 is unramified.

Hence, taking a p-adic field M large enough, we have (V ®q, M)* ~ @fi 1M (1;) for some con-
tinuous crystalline characters v¢;: Gx — M*. Furthermore, for every i, the set of the Hodge-Tate
weights of M (1);) is either {1} or {0}. By Proposition 2.1, we have ¢ < Z?il Vp (Y g ()71 =1). Let
K’ be the unramified extension of Kk of degree pegy/i. By a similar method of the proof of Lemma
3.4, we find that ¢}’ s (m) 71 is a unit root of the characteristic polynomial f(T') of the geometric

Frobenius endomorphism of Z/FK,, otherwise wi‘ (™)1 is a unit root of the characteristic poly-
nomial f¥(T) of the geometric Frobenius endomorphism of AY /g _,. We know f(1) = fA(F,,.,) and
fY(1) = AV (F,,.,), and their p-adic valuations are bounded by Ly(fx~) by the Weil bound. Since

we have [ = fior sk fick = pdick i fr, we obtain ¢ < 3777, v ( P re(m) T =1) <290y (pdgcgyi fro)-
Now the result follows from (3.8). O

4 Abelian varieties over number fields

In this section, we suppose that K is a number field. The goal of this section is to give a proof of
Theorem 1.3 in Introduction. The theorem is an immediate consequence of the following proposi-
tion.

Proposition 4.1. Let g, K,d and h be as in Theorem 1.3.

(1) Let A be a g-dimensional abelian variety over K with semi-stable reduction everywhere. Let pg
be the smallest prime number such that A has good reduction at some finite place of K above pq.
Then A(K (uoo))[p] is zero if p > (1 + \/]Todh)zg, p 1s unramified in K and A has good reduction at
some finite place of K above p.

(2) Let A be a g-dimensional abelian variety over K with complex multiplication which has good
reduction everywhere. Then, for any prime p, we have

A(K (o)) [p™] € Alp©)
where C = 2g% - (29)! - ®(g)H(g) - dh + 12¢g% — 18g + 10.

Proof. Let A be a g-dimensional abelian variety over K with semi-stable reduction everywhere.
Let K’ be the maximal extension of K contained in K (pts) which is unramified at all finite places
of K. Note that K’ is a finite abelian extension of K. In particular, it follows from class field
theory that [K’ : K] is a divisor of the narrow class number h of K. If we denote by L, the
maximal extension of K contained in K (o) which is unramified at all places except for places
dividing p and the infinite places, then it is shown in [KL, Appendix, Lemma] that L, = K'(jpe).

(1) We give a proof of the assertion (1). Here we mainly follow Ribet’s arguments in [KL].
We suppose that p is prime to 2pg and also suppose that p is unramified in K. Assume that
A(K(poo))[p] # O. We claim that there exists a g-dimensional abelian variety A’ over K’ which
is K'-isogenous to A such that A’(K')[p] # O. We denote by G and H the absolute Galois groups
of K’ and K (i), respectively. The assumption A(K(peo))[p] # O is equivalent to say that
Alp]® # O. Let W be a simple G-submodule of A[p]. Ribet showed in the proof of Theorem 2
of [KL] that, since A has semi-stable reduction everywhere over K’, W is one-dimensional over F,,
and the action of G on W factors through Gal(K’(u,)/K’). Since p is unramified at K', we find
that the G-action on W is given by %, for some 0 <n <p — 1, where Y, is the mod p cyclotomic
character. Moreover, since A has good reduction at some finite place of K’ above p (# 2), it follows
from the classification of Tate and Oort that n is equal to 0 or 1. Thus W is isomorphic to F, or
F,(1). If we are in the former case, we have A'(K’)[p] # O for A’ := A. Suppose that we are in
the latter case. Then there exists a surjection AY[p] — F, of G-modules. If we denote by C the
kernel of this surjection, then the G-action on A [p| preserves C'. This implies that A’ := AY/C is
an abelian variety defined over K’ and we find that there exists a trivial G-submodule of A’[p] of
order p. Thus we have A’(K’)[p] # O. This finishes the proof of the claim.
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Now we take a prime p; of K’ above pg such that A has good reduction at pj. Since A’ above
is K'-isogenous to A, we know that A’ has good reduction at pj by [ST, §1, Corollary 2]. If we

denote by K ;6 the completion of K’ at py and also denote by Iy, the residue field of K;(,), then

reduction modulo p{ gives an injective homomorphism
!/ ! ! ! A/
AY(K)[pl € A(Ky, )[p] = A'(Fy,).

We recall that A'(K')[p] # O. Since the order of Fy, is bounded by pg", it follows from the Weil

bound that we have p < (14 \/>dh)29. This ﬁmshes the proof.

(2) We give a proof of the assertion (2). Let A be an abelian variety as in the statement. Since
A has good reduction everywhere over K, it follows from the criterion of Néron-Ogg-Shafarevich
that the Gi-action on A[p™] is unramified outside p. This gives the fact that the Gx-action on
A(K (ppe))[p*] factors through Gal(L,/K) = Gal(K'(up~)/K). Thus we have

A(K (p00)) [P = ACK (p1p)) [P™].

Since we have [K' : Q] < dh, the result follows from Corollary 3.7. O

5 Bounds on ¢(n) and H(n)

We recall the definitions of ®(n) and H(n):
®(n) := Max{m € Z | p(m) divides 2n},
H(n) := ged{4GSpy, (Z/NZ) | N > 3}.

Here, ¢ is the Euler’s totient function. The lists of ®(n), H(n) (and G(n) with p # 3 appeared in
Remark 3.6) for small n are given at the end of this paper. In this section, we study some upper
bounds of ® and H.

5.1 The function H

For the function H, we refer results of [Sil, §3 and §4]. The exact formula for H(n) is as follows:
1 A
)= T H g9
a

where the product is over primes ¢ < 2n + 1,

(n

oo

+Z[2j}, and (g :Z[qjq_l} if ¢ is odd.

J=

Moreover, we have
Theorem 5.1 ([Sil, Corollary 3.3]). We have
H(n) < 2(9n)*"

for any n > 0.

5.2 The function ¢

Next we consider the function ®. At first, we remark that ®(n) must be even since ¢(x) = ¢(2x)
if x is odd. Furthermore, ®(n) is not a power of 2. (In fact, we have p(27) = (2771 - 3) if r > 2.)
Thus it holds that

®(n) = Max {m €z (5.1)

©(m) divides 2n, and m = 2"z
where r > 1 and x > 3 is odd

We show some elementary formulas.
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Proposition 5.2. (1) We have ®(1) =6 and 6 < ®(n) < 6n¥/n for n > 1.
(2) Putt =wv2(n)+2 and let p1 =2 < pa < --- < py be the first t prime numbers. Then we have

t

®(n) <2n bi
il

In particular, we have ®(n) < 6n if n is odd.
(3) If n > 3 is an odd prime, we have®

®(n) = 6 if 2n + 1 is not prime,
| 4n+2 if 2n+ 1 is prime.

Proof. To check ®(1) = 6 is an easy exercise. Since ¢(6) = 2 | 2n, we have ®(n) > 6 for any
n. Suppose n > 1. We take an even integer m > 0, which is of the form 2"x where » > 1 and
x > 3 is odd, such that ¢(m) | 2n. Let m = 2"[[]_, ¢{* be the prime factorization of m with
7,8,€1,...,es > 1. Since p(m) = 2" [[;_, q?_l(qz—l) and ¢(m) | 2n, we have v3(2n) > r—14s
and thus

r+ s <ws(n)+ 2. (5.2)

Then we find
1 s 1 s+1 t
2n > = 1-— - 1——) > 1——) > 1-——
vz otm)=m (1) T (1= 3) = DT (1= ) = DT (- 50)-

This shows (2). Furthermore, we have

t v2(n)
i 5
o[ 2 <on (525)
1 Pi — 1 s bi— 1 5—1
5 logy(n) 1
<6n- (4) < 6 - 23 log2(n),

Thus we obtain (1). Let us show (3). From now on we assume that n > 3 is an odd prime. Assume
that m # 6. Since n is odd, it follows from (5.2) that the prime factorization of m is of the form
m = 2¢° for some odd prime q. Then %ap(m) = ¢¢! = L divides n. Since n > 3 is a prime and
m # 6, we find e = 1 and q;zl = n. This implies 2n + 1 must be prime and m = 4n + 2. Now the
result follows. O

Let us consider an upper bound of ® by using an ”analytic” lower bound function of ¢ given
by Rosser and Schoenfeld. If we denote by v the Euler’s constant”, it is shown in [RS, Theorem

15] that we have®
m

p(m) >

e7loglogm + @

for m > 3. We set
U(n) := Max{m € Z | ¢(m) < 2n}.

We clearly have ®(n) < ¥(n) for all n > 0.

6 A prime number p is called a Sophie German prime if 2p + 1 is also prime. It is not known whether there exist
infinitely many Sophie German prime or not. On the other hand, there exist infinitely many prime which is not
Sophie German prime. In fact, every prime number p with p = 1 mod 3 is not Sophie German prime.

; /11
v = ﬁ — — ) dx=0.57721---. Note also ¢” = 1.78107 - - -
1 x x
8More precisely, Theorem 15 of [RS] states that
m
©(m) > (5-3)

e7 loglogm + TToslon log?og —

for m > 3 except when m is the product of the first nine primes m = 223092870 =2-3-5--7-11-13-17-19-23.
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Proposition 5.3. For any real number C' > 2e”, we have
U(n) < Cnloglogn
for any n large enough.

Proof. Put f(z) = Cloglogxz. Take any integer N > 0 which satisfies the following properties:
For all x > N, it holds

(i) f(z)> %662 and
(i) f(z) > 2¢7(loglog(zf(z)) + 1).

(The assumption C' > 27 asserts the existence of such N.) Take any integer n > N. It suffices to
show that n satisfies the desired inequality. Assume that there exists an 2integelr m such that bot2h
p(m) < 2n and m > nf(n) hold. Since we have ¢¥ > % for z > e® and m(> nf(n)) > e,

we find
m m

. < < p(m) < 2n.
e’ loglogm+1 " evloglogm + oo plm) <
We also have Tog log"(]; (;l()n)) 7 S Tog lofg“m 7 since the function m is strictly increasing for x > e
and m > nf(n)(> e ) > e. Hence we obtain
1 nf(n)

. 2
e? loglog(nf(n))+1 .

which gives f(n) < 2e7(loglog(nf(n)) + 1). This contradicts the condition (ii). Therefore, we
conclude that, if ¢(m) < 2n, then it holds m < nf(n). This implies ¥(n) < nf(n) = Cnloglogn.
O

Remark 5.4. Consider the case C' = 4. By studying (i) and (ii) in the above proof more carefully,
we can show
U(n) < 4nloglogn

for any n > e(1.001e)°
Here we check the above inequality. The condition (ii) is equivalent to say that
log(C'log 1
(logac)i’%_1 >e <1 + log(C'loglog ) ogm)) .
log x

We assume z > e . Since = —-1>4 —1=1%and W < 0.001, the inequality (ii)

holds if (logz)s > 1.001e, that is, 2 > ¢(1:0019)° " Note that (i) clearly holds for such z.
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Table 1: ®(n)
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w
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w
w

w
=~

w
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w
D

w
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w
oo

o
Ne)

W
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O (n) \ n D(n) \ n
-3t 41 2'.83! 81
-3t 42 21.30.72 82
- 32 43 2T. 3T 83
-31.51 44 22.31.231 84
-11T 45 21.317 85
3Tt 46 2T.31.471 86
3T 47 2T 3T 87
.3T.51 48 22.31.5T.71 188
.33 49 2T. 3T 89
T 50 2T.5% 90
231 51 21.103T 91
.32.51 52 21.31.53T 92
3T 53 2T.107T 93
- 291 54 21.33.71 04
- 311 55 21.112 95
.3T.51 56 22.31.291 96
-3t 57 27.32 97
327t 58 2T.3T.597 98
-3t 59 2T.31 99
3T . 52 60 2T-3T.78.111 | 100
72 61 2'.31 101
.37 231 62 2%.3T 102
e 63 21.127! 103
3T.5T. 7t 64 2T.3T.5T. 171 | 104
-111 65 2'.131! 105
- 531 66 27.3%.231 106
.31 67 21.31 107
31207 68 2T.137T 108
- 59T 69 21.139! 109
-32.11t 70 2T.3T.71T 110
kY 71 21.3! 111
3T 5t 72 2032 5071 112
67! 73 21.3! 113
-3t 74 2. 1497 114
STl 75 21.1511 115
3350 76 2T.3T.51 116
-3t 77 2l.231 117
-3t 78 2T.3T.791 118
791 79 2.31 119
3.5l 11t [ 80 22-3t-51.11' | 120
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Table 2: H(n)

n H(n)
1 2%.31
2 28.32.51
3 211.34.51_71
4 216_35,52_71
5 219.36.52. 71111
6 228.3%8.53.72.111.13!
7 2%6.39.5%3 . 77111131
g 232.300.54. 72 111,131 17!
9 2% .3B .5t 73 11T 13T 17T 191
10 2%9.3M.50.73.112. 137 . 177 - 19T
11 2%.35.55.73.112. 13T . 177 . 19T . 23T
12 2% 317 .57 . 74112132 . 171 . 191 . 231
13 2°0.38 .57 . 74,112 132 . 177 . 19T . 23T
14 2°7.39.58 . 77.112. 132 . 177 . 19T . 23T . 291
15 2°7.32T.58 .75 . 113 . 132 . 177 . 197 . 23T . 29T . 31T
16 261.322.59.75.113.132.172.191 . 23T . 20T . 311
17 267.323.59.75. 113 . 132 . 172 - 191 . 23T . 29T . 31T
18 271.3%6.510.76.113.13%.172.19%.231.291 . 31T . 371
19 27 .327.510.76.113.13% . 172 . 19% . 231 . 297 . 31T . 371
20 27.328.512.76.117.13%.172.192. 237 . 291 . 31T . 371 . 411
21 282.330.512.78 117,133 .17%2.192. 237 . 291 . 31T . 371 . 41T . 431
22 286,331 513 .78 117,133 .172.192.232.291 . 31T . 377 . 41T . 43T
23 289.332.513.78.114.133.172.192.23%2.291 . 311 . 371 . 411 . 431 . 47!
24 2% .33 51479 117134178192 . 232 . 29T . 31T . 371 . 41T . 43T . 471
25 298.33%.514.79.115.134.173.192.232.291 . 311 . 371 . 411 . 431 . 47!
Table 3: G(n) (for p # 3)
n G(n)
1 2%.31
2 29.36.5T.130
3 2B3.35.50.71.112.132
4 219.328 .52 . 71112132 . 417 - 1093
5 223.3%.52.71.117.13% . 417 - 617 - 7577 - 10937
6 228.366.53.72.11%7.13%. 237 . 417 . 617 . 73T . 7577 . 10937 - 38517
7 23239153 72117137237 - 41T - 61T - 73T - 5471 - 7571 - 10932 - 38511 - 7971617
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