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Abstract

Let p be a prime number and M the extension field of a p-adic field K obtained by adjoining
all p-power roots of all elements of K. In this paper, we show that there exists a constant C,
depending only on K and an integer g > 0, which satisfies the following property: If A/K is a
g-dimensional CM abelian variety, then the order of the torsion subgroup of A(M) is bounded
by C.

1 Introduction

Let p be a prime number. Let K be a number field (= a finite extension of Q) or a p-adic field (=
a finite extension of Qp). Let A be an abelian variety defined over K of dimension g. It follows
from the Mordell-Weil theorem and the main theorem of [Mat] that the torsion subgroup A(K)tors
of A(K) is finite. The following question for A(K)tors is quite natural and have been studied for
a long time:

Question. What can be said about the size of the order of A(K)tors?

If K is a number field of degree d and A is an elliptic curve (i.e., g = 1), it is really surprising that
there exists a constant B(d), depending only on the degree d, such that ]A(K)tors < B(d). The
explicit formula of such a constant B(d) is given by Merel, Oesterlé and Parent (cf. [Me], [Pa]).
The amazing point here is that the constant B(d) is uniform in the sense that it depends not on
the number field K but on the degree d = [K : Q]. Such uniform boundedness results are not
known for abelian varieties of dimension greater than one. Next we consider the case where K is
a p-adic field. As remarked by Cassels, the ”uniform boundedness theorem” for p-adic base fields
would be false (cf. Lemma 17.1 and p.264 of [Ca]). For abelian varieties A over K with anisotropic
reduction, Clark and Xarles [CX] give an upper bound of the order of A(K)tors in terms of g, p and
some numerical invariants of K. This includes the case in which A has potentially good reduction,
and in this case the existence of a bound can be found in some literatures (cf. [Si2], [Si3]).

We are interested in the order of A(L)tors for certain algebraic extensions L of K of infinite
degree. Now we suppose that K is a p-adic field. There are not so many known L so that A(L)tors is
finite. Imai [Im] showed that A(L)tors is finite if A has potential good reduction and L = K(µp∞),
where µp∞ is the set of p-power root of unity. The author [Oz] showed that Imai’s finiteness result
holds even if we replace L = K(µp∞) with L = Kkπ, where k is a p-adic field and kπ is the Lubin-
Tate extension of k associated with a certain uniformizer π of k. The result [KT] of Kubo and
Taguchi is also interesting. They showed that the torsion subgroup of A(K( p∞

√
K)) is finite, where

A is an abelian variety over K with potential good reduction and K( p∞
√
K) is the extension field
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of K obtained by adjoining all p-power roots of all elements of K. Our main theorem is motivated
by the result of Kubo and Taguchi. The goal of this paper is to show that, under the assumption
that A has complex multiplication, the order of A(K( p∞

√
K))tors is ”uniformly” bounded.

Theorem 1. There exists a constant C(K, g), depending only on a p-adic field K and an integer
g > 0, which satisfies the following property: If A is a g-dimensional abelian variety over K with
complex multiplication, then we have

]A
(
K(

p∞
√
K)
)
tors

< C(K, g).

The theorem above gives a global result: For any integer d > 0, we denote by Q≤d the composite
of all number fields of degree ≤ d. If we fix an embedding Q ↪→ Qp, then Q≤d is embedded into
the composite field of all p-adic fields of degree ≤ d, which is a finite extension of Qp. If we denote
by Q≤d,p the extension field of Q≤d obtained by adjoining all p-power roots of all elements of Q≤d,
then the following is an immediate consequence of our main theorem.

Corollary 2. There exists a constant C(d, g, p), depending only on positive integers d, g and a
prime number p, which satisfies the following property: If A is a g-dimensional abelian variety
over Q≤d with complex multiplication, then we have

]A(Q≤d,p)tors < C(d, g, p).

Notation : Throughout this paper, a p-adic field means a finite extension of Qp in a fixed algebraic
closure Qp of Qp. If F is an algebraic extension of Qp, we denote by OF and FF the ring of integers
of F and the residue field of F , respectively. We denote by GF the absolute Galois group of F and
also denote by ΓF the set of Qp-algebra embeddings of F into Qp. We put dF = [F : Qp]. For
an algebraic extension F ′/F , we denote by eF ′/F and fF ′/F the ramification index of F ′/F and
the extension degree of the residue field extension of F ′/F , respectively. We set eF := eF/Qp

and

fF := fF/Qp
, and also set qF := pfF . If F is a p-adic field, we denote by F ab and F ur the maximal

abelian extension of F and the maximal unramified extension of F , respectively.

2 Proof

2.1 Some technical tools

We denote by vp the p-adic valuation on a fixed algebraic closure Qp of Qp normalized by vp(p) = 1.
Let K be a p-adic field. For any continuous character χ of GK , we often regard χ as a character
of Gal(Kab/K). We denote by ArtK the local Artin map K× → Gal(Kab/K) with arithmetic

normalization. We set χK := χ ◦ ArtK . We denote by K̂× the profinite completion of K×. Note
that the local Artin map induces a topological isomorphism ArtK : K̂× ∼→ Gal(Kab/K).

Proposition 3. Let K and k be p-adic fields. We denote by kπ the Lubin-Tate extension of k
associated with a uniformizer π of k. (If k = Qp and π = p, then we have kπ = Qp(µp∞).) Let

χ1, . . . , χn : GK → Q×
p be continuous characters. Then we have

Min

{
n∑

i=1

vp(χi(σ)− 1) | σ ∈ GKkπ

}

≤ Min

{
n∑

i=1

vp(χi,K ◦NrKk/K(ω)− 1) | ω ∈ Nr−1
Kk/k(π

fKk/kZ)

}
.

Proof. We have a topological isomorphism Art−1
k : Gal(kab/k)

∼→ k̂× and Art−1
k (Gal(kab/kur)) =

O×
k . We denote by M the maximal unramified extension of k contained in Kk. Since the group
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Art−1
k (Gal(kab/M)) contains O×

k and is a subgroup of k̂× = πẐ × O×
k of index [M : k], we see

Art−1
k (Gal(kab/M)) = π[M :k]Ẑ×O×

k . On the other hand, we have Art−1
k (Gal(kab/kπ)) = πẐ. Thus

we obtain Art−1
k (Gal(kab/Mkπ)) = π[M :k]Ẑ. Now we denote by ResKk/k the natural restriction

map Gal((Kk)ab/Kk) → Gal(kab/k). It is not difficult to check that Res−1
Kk/k(Gal(kab/Mkπ)) =

Gal((Kk)ab/Kkπ). Thus it follows that the group Art−1
Kk(Gal((Kk)ab/Kkπ)) coincides with Nr−1

Kk/k(π
[M :k]Ẑ).

Therefore, if we take any ω ∈ Nr−1
Kk/k(π

[M :k]Z), we have

Min

{
n∑

i=1

vp(χi(σ)− 1) | σ ∈ GKkπ

}

= Min

{
n∑

i=1

vp(χi(σ)− 1) | σ ∈ Gal((Kk)ab/Kkπ)

}

= Min

{
n∑

i=1

vp(χi,K ◦NrKk/K ◦Art−1
Kk(σ)− 1) | σ ∈ Gal((Kk)ab/Kkπ)

}

≤
n∑

i=1

vp(χi,K ◦NrKk/K(ω)− 1).

We recall an observation of Conrad. We denote by K× the Weil restriction ResK/Qp
(Gm) and

let DK
cris(·) := (Bcris ⊗Qp ·)GK .

Proposition 4 ([Co, Proposition B.4]). Let K and F be p-adic fields. Let χ : GK → F× be a
continuous character. We denote by F (χ) the Qp-representation of GK underlying a 1-dimensional
F -vector space endowed with an F -linear action by GK via χ,
(1) χ is crystalline1 if and only if there exists a (necessarily unique) Qp-homomorphism χalg : K

× →
F× such that χK and χalg (on Qp-points) coincides on O×

K (⊂ K× = K×(Qp)).
(2) Let K0 be the maximal unramified subextension of K/Qp. Assume that χ is crystalline and let
χalg be as in (1). (Note that χ−1 is also crystalline.) Then, the filtered ϕ-module DK

cris(F (χ
−1)) =

(Bcris⊗Qp F (χ
−1))GK over K is free of rank 1 over K0⊗Qp F and its k0-linear endomorphism ϕfK

is given by the action of the product χK(πK) · χ−1
alg(πK) ∈ F×. Here, πK is any uniformizer of K.

We define some notations for later use. Assume that K is a Galois extension of Qp. Let
χ : GK → K× be a crystalline character. Let χLT : IK → K× be the restriction to the inertia
IK of the Lubin-Tate character associated with any choice of uniformizer of K (it depends on the
choice of a uniformizer of K, but its restriction to the inertia subgroup does not). By definition,
the character χLT is characterlized by χLT ◦ArtK(x) = x−1 for any x ∈ O×

K . (We remark that χLT

is the restriction to IK of the p-adic cyclotomic character if K = Qp.) Then, we have

χ =
∏

σ∈ΓK

σ−1 ◦ χhσ

LT

on the inertia IK for some (unique) integer hσ. Equivalently, the character χalg (appeared in
Proposition 4) on Qp-points is given by

χalg(x) =
∏

σ∈ΓK

(σ−1x)−hσ

for x ∈ K×. We say that h = (hσ)σ∈ΓK
is the Hodge-Tate type of χ. Note that {hσ | σ ∈ ΓK} as a

set is the set of Hodge-Tate weights of K(χ), that is, C ⊗Qp
K(χ) ≃ ⊕σ∈ΓK

C(hσ) where C is the

completion of Qp.

1This means that the Qp-representation F (χ) of GK is crystalline.
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For any set of integers h = (hσ)σ∈ΓK
indexed by ΓK , we define a continuous character

ψh : O×
K → O

×
K by

ψh(x) =
∏

σ∈ΓK

(σ−1x)−hσ . (2.1)

Lemma 5. For 1 ≤ i ≤ r, let hi = (hi,σ)σ∈ΓK
be a set of integers. For each i, assume that

(a)
∑

σ∈ΓK
hi,σ is not zero, and

(b) hi,σ ̸= hi,τ for some σ, τ ∈ ΓK .

Then, there exists an element ω of kerNrK/Qp
such that ψh1(ω), . . . , ψhr (ω) are of infinite orders.

Proof. For any character χ on O×
K , we denote by χ′ the restriction of χ to 1+ p2OK . To show the

lemma, it suffices to show

kerNr′K/Qp
̸⊂

r⋃
i=1

kerψ′
hi
. (2.2)

(In fact, any non-trivial element of Im ψ′
hi

is of infinite order since Im ψ′
hi

is a subgroup of a torsion
free group 1+p2OK .) SinceN ′

K/Qp
(1+p2OK) is an open subgroup of Z×

p , we see that the dimension2

of kerN ′
K/Qp

is dK − 1. We claim that dimkerψhi
< dK − 1. By the assumption (a), we see that

Im ψ′
hi

contains an open subgroup H of Z×
p . Thus we have dimkerψ′

hi
= dK−dim Im ψ′

hi
≤ dK−1.

If we assume dimkerψ′
hi

= dK − 1, then dim Im ψ′
hi

= 1 and thus H is a finite index subgroup of

Im ψ′
hi
. It follows that there exists an open subgroup U of O×

K such that ψhi restricted to U has
values in Z×

p . By [Oz, Lemma 2.4], we obtain that hi,σ = hi,τ for any σ, τ ∈ ΓK but this contradicts
the assumption (b) in the statement of the lemma. Thus we conclude that dimker ψ′

hi
< dK − 1.

Now we fix an isomorphism ι : 1 + p2OK ≃ Z⊕dK
p of topological groups. We define vector

subspaces N and Pi of Q⊕dK
p by N := ι(kerNr′K/Qp

) ⊗Zp Qp and Pi := ι(kerψ′
hi
) ⊗Zp Qp. We

know that dimQp
N = dK − 1 and dimQp

Pi < dK − 1. Assume that (2.2) does not hold, that is,
kerNr′K/Qp

⊂
⋃r

i=1 kerψ
′
hi
. Then we have N ⊂

⋃r
i=1 Pi. This implies N =

⋃r
i=1(N ∩ Pi). By

the lemma below, we find that N = N ∩ Pi ⊂ Pi for some i but this contradicts the fact that
dimQp

N > dimQp
Pi.

Lemma 6. Let V be a vector space over a field F of characteristic zero. Let W1, . . . ,Wr be vector
subspaces of V . If V =

⋃r
i=1Wi, then V =Wi for some i.

Proof. We show by induction on r. The cases r = 1, 2 are clear. Assume that the lemma holds
for r and suppose V =

⋃r+1
i=1 Wi. We assume both W1 ̸⊂

⋃r+1
i=2 Wi and Wr+1 ̸⊂

⋃r
i=1Wi holds.

Then there exist elements x1 ∈ W1 ∖
⋃r+1

i=2 Wi and xr+1 ∈ Wr+1 ∖
⋃r

i=1Wi. It is not difficult
to check that we have λx1 + xr+1 /∈ W1

⋃
Wr+1 for any λ ∈ F×. Hence there exists an integer

2 ≤ jn ≤ r for each integer n > 0 such that nx1 + xr+1 ∈ Wjn . Take any integers 0 < ` < k
so that jℓ = jk(=: j). Then (k − `)x1 = (kx1 + xr+1) − (`x1 + xr+1) ∈ Wj . Since F is of

characteristic zero, we have x1 ∈ Wj but this contradicts the fact that x1 /∈
⋃r+1

i=2 Wi. Therefore,

either W1 ⊂
⋃r+1

i=2 Wi or Wr+1 ⊂
⋃r

i=1Wi holds. This shows that V =
⋃r+1

i=2 Wi or V =
⋃r

i=1Wi

and the induction hypothesis implies V =Wi for some i.

Finally we describe the following consequence of p-adic Hodge theory, which is well-known for
experts.

Proposition 7. Let X be a proper smooth variety with good reduction over a p-adic field K. Then
we have

det(T − ϕfK | DK
cris(H

i
ét(XK ,Qp)) = det(T − Frob−1

K | Hi
ét(XK ,Qℓ))

for any prime ` ̸= p. Here, FrobK stands for the arithmetic Frobenius of K.

2If a profinite group G has an open subgroup U which is isomorphic to Z⊕d
p , then d does not depend on the

choice of U and we say that d is the dimension of G. For example, dimZ⊕d
p = d. Note that the dimension of G is

zero if and only if G is finite. See [DDMS] for general theories of dimensions of p-adic analytic groups.
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Proof. Let Y be the special fiber of a proper smooth model of X over the integer ring of K.
By the crystalline conjecture shown by Faltings [Fa] (cf. [Ni], [Tsu]), we have an isomorphism
DK

cris(H
i
ét(XK ,Qp)) ≃ K0 ⊗W (FqK

) H
i
cris(Y/W (FqK )) of ϕ-modules over K0. It follows from

Corollary 1.3 of [CLS] (cf. [KM, Theorem 1] and [Na, Remark 2.2.4 (4)]) that the characteris-
tic polynomial of K0 ⊗W (FqK

) H
i
cris(Y/W (FqK )) for the (fK-iterate) Frobenius action coincides

with det(T − Frob−1
K | Hi

ét(XK ,Qℓ)) for any prime ` ̸= p. Thus the result follows.

2.2 Proof of the main theorem

Let A be a g-dimensional abelian variety over K with complex multiplication. We denote by L
the field obtained by adjoining to K all points of A[12]. It follows from [Si1, Theorem 4.1] that
endomorphisms of A are defined over L. By the Raynaud’s criterion of semistable reduction [Gr,
Proposition 4.7], A has semi-stable reduction over L. Moreover, A has good reduction over L since
A has complex multiplication [ST, Section 2, Corollary 1]. Since the extension degree of L over
K is at most the order of GL2g(Z/12Z) and there exist only finitely many p-adic field of a given
degree, we immediately reduces a proof of Theorem 1 to show the following

Proposition 8. There exists a constant Ĉ(K, g), depending only on a p-adic field K and an integer
g > 0, which satisfies the following property: Let A be a g-dimensional abelian variety over K with
the properties that A has good reduction over K and EndK(A) ⊗Z Q is a CM field of degree 2g.
Then we have

]A
(
K(

p∞
√
K)
)
tors

< Ĉ(K, d).

Proof. Since there exist only finitely many p-adic field of a given degree, replacing K by a finite
extension, we may assume the following hypothesis:

(H) K is a Galois extension of Qp and K contains all p-adic fields of degree ≤ 2g.

In the rest of the proof, we set M := K( p∞
√
K). Let A be a g-dimensional abelian variety over

K with the properties that A has good reduction over K and F := EndK(A) ⊗Z Q is a CM
field of degree 2g. Let T = Tp(A) := lim←−n

A[pn] be the p-adic Tate module of A and V =

Vp(A) := Tp(A)⊗Zp
Qp. Then V is a free Fp := F ⊗Qp-module of rank one and the representation

ρ : GK → GLZp
(T )(⊂ GLQp

(V )) defined by the GK-action on T has values in GLFp
(V ) = F×

p . In
particular, ρ is an abelian representation. The representation V is a Hodge-Tate representation
with Hodge-Tate weights 0 (multiplicity g) and 1 (multiplicity g). Moreover, V is crystalline
since A has good reduction over K. Fix an isomorphism ι : T

∼→ Z⊕2g
p of Zp-modules. We have

an isomorphism ι̂ : GLZp(T ) ≃ GL2g(Zp) relative to ι. We abuse notation by writing ρ for the
composite map GK → GLZp

(T ) ≃ GL2g(Zp) of ρ and ι̂. Now let P ∈ T and denote by P̄ the
image of P in T/pnT . By definition, we have ι(σP ) = ρ(σ)ι(P ) for σ ∈ GK . Suppose that
P̄ ∈ (T/pnT )GM . This implies σP − P ∈ pnT for any σ ∈ GM . This is equivalent to say that
(ρ(σ) − E)ι(P ) ∈ pnZ⊕2g

p , and this in particular implies det(ρ(σ) − E)ι(P ) ∈ pnZ⊕2g
p for any

σ ∈ GM . If we denote by Mab the maximal abelian extension of K contained in M , it holds that
ρ(GM ) = ρ(GMab

) since ρ(GK) is abelian. Thus we have

det(ρ(σ)− E)ι(P ) ∈ pnZ⊕2g
p for any σ ∈ GMab

. (2.3)

On the other hand, we set G := Gal(M/K) and H := Gal(M/K(µp∞)). Let χp : GK → Z×
p be

the p-adic cyclotomic character. Since we have στσ−1 = τχp(σ) for any σ ∈ G and τ ∈ H, we see
(G,G) ⊃ (G,H) ⊃ Hχp(σ)−1. Hence we have a natural surjection

H/Hχp(σ)−1 ↠ H/(G,G) = Gal(Mab/K(µp∞)) for any σ ∈ G. (2.4)

Let ν be the smallest p-power integer with the properties that ν > 1 and χp(GK) ⊃ 1 + νZp.
Then (2.4) gives the fact that Gal(Mab/K(µp∞)) is of exponent ν, that is, σ ∈ GK(µp∞ ) implies
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σν ∈ GMab
. Hence it follows from (2.3) that, for any point P ∈ T such that its image P̄ in T/pnT

is fixed by GM , we have

det(ρ(σ)ν − E)ι(P ) ∈ pnZ⊕2g
p for any σ ∈ GK(µp∞ ). (2.5)

Claim 1. There exists a constant C0(K, g), depending only on K and g such that

vp(det(ρ(σ0)
ν − E)) ≤ C0(K, g)

for some σ0 ∈ GK(µp∞ ).

Admitting this claim, we can finish the proof of Proposition 8 immediately: It follows from
Claim 1 and (2.5) that (T/pnT )GM ⊂ pn−C0(K,g)T/pnT for n > C0(K, g). Setting C(K, g)p :=
pC0(K,g)2g, we obtain ]A(M)[pn] = ](T/pnT )GM ≤ ](T/pC0(K,g)T ) = C(K, g)p, which shows
]A(M)[p∞] ≤ C(K, g)p, On the other hand, we remark that Kubo and Taguchi showed in [KT,
Lemma 2.3] that the residue field FM of M is finite. The reduction map indues an injection
from the prime-to-p part of A(M) into A(FM ) where A is the reduction of A. If we denote by q
the order of FM , it follows from the Weil bound that ]A(FM ) ≤ (1 +

√
q)2g. Therefore, setting

C(K, g) := C(K, g)p · (1 +
√
q)2g, we conclude that ]A(M)tors ≤ C(K, g). This finishes the proof

of the proposition.
It suffices to show Claim 1. Since the action of GK on V factors through an abelian quotient of

GK , it follows from the Schur’s lemma that each Jordan Hölder factor of V ⊗Qp
Qp is of dimension

one. Let ψ1, . . . , ψ2g : GK → Q×
p be the characters associated with the Jordan Hölder factors of

V ⊗Qp
Qp. Since K contains all p-adic fields of degree ≤ 2g, we know that each ψi has values

in K× (in fact, for any σ ∈ GK , we know that ψ1(σ), . . . , ψ2g(σ) are the roots of the polynomial
det(T − σ | V ) ∈ Qp[T ] of degree 2g). In the rest of the proof, we regard ψi as a character
GK → K× of GK with values in K×. We remark that each ψi is a crystalline character since V is
crystalline. Furthermore, we have

vp(det(ρ(σ)
ν − E)) = vp

(
2g∏
i=1

(ψν
i (σ)− 1)

)
=

2g∑
i=1

vp(ψ
ν
i (σ)− 1)

for any σ ∈ GK(µp∞ ). Hence it follows from Lemma 3 that we have

Min
{
vp(det(ρ(σ)

ν − E) | σ ∈ GK(µp∞ )

}
≤ Min

{
2g∑
i=1

vp(ψ
ν
i,K(pω)−1 − 1) | ω ∈ kerNrK/Qp

}
. (2.6)

Note that we have

ψi,K(pω)−1 = ψi,K(π−eK
K · πeK

K p−1) · ψi,K(ω)−1

= ψi,K(πK)−eKψi,alg(π
eK
K p−1) · ψi,K(ω)−1

= α−eK
i · ψi,alg(p)

−1 · ψi,K(ω)−1 (2.7)

for ω ∈ kerNrK/Qp
where αi := ψi,K(πK)ψi,alg(πK)−1.

Lemma 9. Let the notation be as above. Let A∨ be the dual abelian variety of A, and let A and
A∨ be the reductions of A and A∨, respectively.
(1) αi is a root of the characteristic polynomial of the geometric Frobenius endomorphism of A/FK

.

(2) α−1
i qK is a root of the characteristic polynomial of the geometric Frobenius endomorphism of

A∨
/FK

.
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Proof. Since K(ψ−1
i ) is a subquotient of Vp(A)

∨ ⊗Qp
K, it follows from Proposition 4 that αi is

a root of the characteristic polynomial f(T ) := det(T − ϕfK | DK
cris(Vp(A)

∨)) of the K0-linear
endomorphism ϕfK , the fK-th iterate of the Frobenius ϕ, on the K0-vector space DK

cris(Vp(A)
∨).

We find that

f(T ) = det(T − ϕfK | DK
cris(H

1
ét(AK ,Qp))

= det(T − Frob−1
K | H1

ét(AK ,Qℓ) = det(T − FrobK | Vℓ(A))

for any prime ` ̸= p where FrobK stands for the arithmetic Frobenius. The second equality follows
from Proposition 7. The last term above coincides with the characteristic polynomial of the
geometric Frobenius endomorphism of A/FK

. This shows (1). On the other hand, it follows from

Proposition 4 again that α−1
i is a root of det(T−ϕfK | DK

cris(Vp(A))). Since Vp(A)(−1) ≃ Vp(A∨)∨,
we see that α−1

i qK is a root of f∨(T ) := det(T − ϕfK | DK
cris(Vp(A

∨)∨)). Now the same argument
of the proof of (1) with replacing A by A∨ gives a proof of (2).

We continue the proof of Proposition 8. Let hi = (hi,σ)σ∈ΓK
be the Hodge-Tate type of ψi.

Then we have hi,σ ∈ {0, 1} for any i and σ. We may suppose the following:

(I) hi ̸= (0)σ∈ΓK
, (1)σ∈ΓK

for 1 ≤ i ≤ r, and

(II) hi = (0)σ∈ΓK
or hi = (1)σ∈ΓK

for r + 1 ≤ i ≤ 2g.

Consider the case hi = (0)σ∈ΓK
. If this is the case, ψi is unramified. This implies that ψi,alg on

(Qp-points) is trivial. Take any ω ∈ kerNrK/Qp
and consider the p-adic value vp(ψ

ν
i,K(pω)−1 − 1).

By (2.7), we have
ψν
i,K(pω)−1 = α−νeK

i . (2.8)

We remark that the right hand side is independent of the choice of ω ∈ kerNrK/Qp
and αi must

be a p-adic unit (since so is the left hand side). Next consider the case hi = (1)σ∈ΓK
. If this is the

case, we have ψi = χp on IK , that is, ψi,alg (on Qp-points) is Nr−1
K/Qp

. Take any ω ∈ kerNrK/Qp

and consider the p-adic value vp(ψ
ν
i,K(pω)−1 − 1). By (2.7), we have

ψν
i,K(pω)−1 = (α−eK

i ·NrK/Qp
(p))ν = (α−1

i qK)νeK . (2.9)

We remark that the last term is independent of the choice of ω ∈ kerNrK/Qp
.

Suppose r + 1 ≤ i ≤ 2g. Let L be the unramified extension of K of degree νeK . Denote
by fi(T ) the characteristic polynomial of the Frobenius endomorphism of A/FL

(resp. A∨
/FL

)
if hi = (0)σ∈ΓK

(resp. hi = (1)σ∈ΓK
). It follows from (2.8) (resp. (2.9)) and Lemma 9 that

ψν
i,K(pω) (resp. ψν

i,K(pω)−1) is a unit root of fi(T ). Since fi(1) coincides with ]A(FqL) (resp.

]A∨(FqL)), we find vp(ψ
ν
i,K(pω)−1 − 1) ≤ vp(fi(1)). It follows from the Weil bound that fi(1) ≤

(1+
√
qL)

2g ≤ (1+
√
pνdK )2g, which gives an inequality vp(fi(1)) ≤ logp(1+

√
pνdK )2g. Therefore,

setting C2(K, g) := logp(1 +
√
pνdK )2g, we obtain

vp(ψ
ν
i,K(pω)−1 − 1) ≤ C2(K, g)

for r + 1 ≤ i ≤ 2g.
Suppose 1 ≤ i ≤ r. We define a subset R = R(K, g) of Qp by the set consisting of α ∈ Qp which

is a root of a polynomial in Z[T ] of degree at most 2g and also is a qK-Weil integer of weight 1. We
also define R′ = R′(K, g) := {(α−eKph)ν | α ∈ R, 0 < h < dK}. Then, both R and R′ are finite
sets and depend only on K and g. Furthermore, Lemma 9 and the Weil Conjecture imply that

each αi is an element of R. Thus, setting γi := α−eK
i · ψi,alg(p)

−1 = α−eK
i · p

∑
σ∈ΓK

hi,σ , we have
γνi ∈ R′. We consider the continuous character ψhi : O×

K → O
×
K defined in (2.1). The character

ψi,alg (on Qp-points) restricted to O×
K coincides with ψhi . By Lemma 5, there exists an element

ω = ω(K;h1, . . .hr) of kerNrK/Qp
such that ψν

h1
(ω), . . . , ψν

hr
(ω) are of infinite order. Since R′ is

finite, there exists an integer r such that ψν
h1
(ωr), . . . , ψν

hr
(ωr) are not contained in R′. Putting

ω0 = ωr, it holds that
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• ω0 is an element of kerNrK/Qp
. Furthermore, ω0 depends only on K, g and h1, . . . ,hr, and

• ψν
h1
(ω0), . . . , ψ

ν
hr
(ω0) are not contained in R′.

Now we define a constant C(K, g,h1, . . . ,hr) by

C(K, g,h1, . . . ,hr) = Max

{
r∑

i=1

vp(γ
′
iψ

ν
hi
(ω0)

−1 − 1) | γ′i ∈ R′

}
.

By construction of ω0, we see that the constant above is finite and depends only on K, g,h1, . . . ,hr.
We find that

Min

{
2g∑
i=1

vp(ψ
ν
i,K(pω)−1 − 1) | ω ∈ kerNrK/Qp

}

≤
2g∑
i=1

vp(ψ
ν
i,K(pω0)

−1 − 1) =

r∑
i=1

vp(γ
ν
i ψ

ν
hi
(ω0)

−1 − 1) +

2g∑
i=r+1

vp(ψ
ν
i,K(pω0)

−1 − 1)

≤C(K, g,h1, . . . ,hr) + (2g − r)C2(K, g) ≤ C0(K, g). (2.10)

Here,

C0(K, g) := Max {C(K, g,h1, . . . ,hr) + (2g − r)C2(K, g) | 0 ≤ r ≤ 2g, h1, . . . ,hr : Case (I)}

(if r = 0, we consider the constant C(K, g,h1, . . . ,hr) as zero). By construction, the constant
C0(K, g) is finite and depends only on K and g. By (2.6) and (2.10), we conclude that C0(K, g)
defined here satisfies the desired property of Claim 1. This is the end of the proof of Proposition
8.

We end this paper with the following remarks.

Remark 10. (1) We do not know the explicit description of the bound C(K, g) in Theorem 1.
(2) We do not know whether we can remove the sentence ”with complex multiplication” from the
statement of Theorem 1 or not.
(3) Let K be a p-adic field. Let π = π0 be a uniformizer of K and πn a pn-th root of π such that
πp
n+1 = πn for any n ≥ 0. We set K∞ := K(πn | n ≥ 0). The field K∞ is clearly a subfield of

K( p∞
√
K). It is well-known that K∞ is one of key ingredients in (integral) p-adic Hodge theory

since K∞ is familiar to the theory of norm fields. We can check the equality

A(K∞)tors = A(K)tors

holds for any abelain variety A over K with good reduction. (We do not need CM assumption
here.) The proof is as follows: It follows from the criterion of Néron-Ogg-Shafarevich [ST, Theorem
1] that the inertia subgroup IK of GK acts trivially on the prime-to-p part of A(K)tors. Since K∞
is totally ramified over K, we obtain the fact that the prime-to-p parts of A(K)tors and A(K∞)tors
coincide with each other. On the other hand, we consider the following natural maps.

A(K)[pn] ≃ HomGK
(Z/pnZ, A(K)[pn])

ι
↪→ HomGK∞

(Z/pnZ, A(K)[pn]) ≃ A(K∞)[pn]

Since A has good reduction, the injection ι above is bijective (cf. [Br, Theorem 3.4.3] for p > 2;
[Ki], [La], [Li] for p = 2). This implies A(K∞)[p∞] = A(K)[p∞].
(4) It follows immediately from (3), the Raynaud’s criterion of semistable reduction and the main
theorem of [CX] that there exists an explicitly calculated constant C, depending only on K and g,
such that we have

]A(K∞)tors < C

for any abelain variety A over K with potential good reduction. (We do not need CM assumption
here.) We leave the readers to give the explicit description of C above.
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Number Theory 8 (2014), 2201-2262.

[Li] Tong Liu, The correspondence between Barsotti-Tate groups and Kisin modules when p = 2,
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[Me] Löıc, Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent.
Math., 124 (1996), 437–449.

[Na] Y. Nakkajima, p-adic weight spectral sequences of log varieties, J. Math. Sci. Univ. Tokyo
12 (2005), 513–661.

[Ni] W. Niziol, Crystalline conjecture via K-theory, Ann. Sci. École Norm. Sup. (4) 31 (1998),
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