
Modeling Software Characteristics and Their Correlations in A Specific Domain
by Comparing Existing Similar Systems

Akira Osada Daigo Ozawa Haruhiko Kaiya Kenji Kaijiri
Graduate School of Science and Technology, Shinshu University

4-17-1 Wakasato, Nagano 380-8553, Japan
csada@cs.shinshu-u.ac.jp t05a516@amail.shinshu-u.ac.jp

kaiya@cs.shinshu-u.ac.jp kaijiri@cs.shinshu-u.ac.jp

Abstract

Software in a specific domain has several characteris-
tics and each characteristic should be fixed when the soft-
ware requirements are specified. In addition, these charac-
teristics sometimes correlate with each other. However, we
sometimes forget to specify several characteristics and/or
to take their correlations into account during requirements
elicitation. In this paper, we propose a meta-model for rep-
resenting such characteristics and their correlations, and
also propose a method to build a model for a specific do-
main by using documents about existing software systems.
By using our model for a domain, a requirements specifi-
cation for a system in the domain could be complete and
unambiguous because requirements analysts can check the
characteristics that should be decided. The specification
could be also correct and consistent because the analysts
can know side effects of a requirement change by using cor-
relation among the characteristics. We have applied our
methods to a case study for confirming the usefulness of
such model and the methods.

Keywords: Requirements Engineering,
Requirements elicitation, Domain Modeling.

1. Introduction
We can derive knowledge of a specific domain from re-

sources of existing systems belonging to the domain, and
the knowledge can be used to elicit and define requirements
of a new system in the domain. For example, when a re-
quirements analyst elicits requirements about a user identi-
fication system for a specific library, the analyst will refer
similar systems and/or their documents implicitly or explic-
itly. In this paper, we will propose a model how to explicitly
manage such knowledge, a method how to use such knowl-
edge and a method how to build the model. The expected
results of the model and the methods are as follows.
• We can avoid forgetting to specify software character-

istics that should be decided in a specific domain.
• We can avoid specifying several characteristics mutu-

ally contradicting each other.

register users

(up to 106 users)

change password

(within 1.0 sec)

System B
register users

(up to 109 users)

change password

(within 10.0 sec)

System C

register users
(up to 1000 users)

change password

(within 0.5 sec)

System A

capacity of the system:
Characteristic

response:
Characteristic

HighMiddleLow

Middle LowHigh > >

< <

F
G

H

X
Y Z

Figure 1. Example of Comparison and Order-
ing between Similar Systems

• We can avoid incorrect realization of such characteris-
tics.

The main ideas of our model and methods are compar-
ison and ordering between similar functions and attributes
that belong to different existing systems. For example in
Figure 1, suppose we have three similar but different sys-
tems for user identification, and each system has two kinds
of function; “register users” and “change password”. By
comparing three functions labeled by “F”, “G” and “H” in
the Figure, we can know “the maximal number of users”
is one of the characteristics that should be specified in the
requirements. However, we sometimes miss such character-
istics by referring only one function, e.g., only “F”. In addi-
tion, we can put these three functions in order with respect
to the number, and we can assume this ordering specifies a
preference or a criterion about this kind of function. In this
case, “larger number of users is preferred” is a criterion.

The comparison is also useful to identify mandatory
and/or optional characteristics. For example, suppose a
characteristic about “change password”. If all functions
about the characteristic work within 0.5 seconds, this at-
tribute value (i.e., within 0.5 seconds) will be mandatory
requirement. On the other hand, if functions have differ-



ent values as shown in Figure 1, it will not be mandatory
requirement about this characteristic, and even we may as-
sume this characteristic is unstable.

We also try to detect incorrectness and inconsistency
among characteristics by using our model and methods.
When customers request to change some characteristics, we
should reconsider related characteristics that are not explic-
itly mentioned. If we do not reconsider such related char-
acteristics, to-be-system would not meet needs of the cus-
tomers. Thus, we have to know which characteristics are
mutually related with each other. Correlations are system-
atically calculated by using the ordering among functions
or attributes, and we assume missing effects could be found
by such correlations. Figure 1 shows a simple example of
a correlation. For a function “register users”, instances of
the function are put in order as “H”, “G” and “F”, with
respect to a criteria that “large number is preferred”. On
the other hand, instances of “change password” are put in
order as “X”, “Y” and “Z”, with respect to a criteria that
“quick response is preferred”. The orderings about the two
functions are reverse, thus we may assume two characteris-
tics corresponding to the functions will negatively correlate
with each other. When this correlation is suggested under
the change request about “register users”, we can confirm
whether characteristics about “change password” should be
reconsidered or not. If we do not reconsider it, the charac-
teristics about “change password” could be decided against
the needs of customers, e.g., the response capability be-
comes bad. As a result, we cannot avoid incorrectness re-
lated to “change password”.

The rest of this paper is as follows. In section 2, we ex-
plain how to represent knowledge about existing systems as
shown in Figure 1, i.e., a meta-model for such knowledge.
In section 3, we explain the usage of a model for a spe-
cific domain and advantages of the model. In section 4, we
present how to develop a model for a specific domain. In
section 5, we show a case study for confirming the useful-
ness of our model and methods. Finally, we discuss related
works and summarize current results and future works.

2. Model of Software Characteristics and Their
Correlation

In this section, we first show the meta-model, i.e., the
data structure of a model for knowledge in a specific do-
main. Then, we show an example of this model to show
that we can represent characteristics and their correlations
by using the models.

2.1 Meta-Model
Figure 2 is the meta-model for a knowledge represen-

tation in a specific domain, written in a class diagram of
UML. We explain the meta-model as follows.
• For an application domain, there should be more than

two instances of existing systems.

Domain

Characteristic

Correlation

Requirement

Existing System
1

1..*

{ordered}

1..*

2..*

2
0..*

Requirements Group

Ordering Criteria

0..*

1
1

Positive Negative

2..*

1 1

Figure 2. Meta-Model
• Each system consists of several requirement state-

ments, e.g., written as sentences, or written as use
cases.

• A requirement group has an ordered set of require-
ments, and the group also has a criterion how to put
the requirements in order. The cardinal number of the
set should be more than two.

• A requirement group corresponds to a characteristic.
This means that the characteristic is specified by the
ordered set of concrete requirements.

• A domain has several characteristics that should be
specified or taken into account.

• Two requirements groups sometimes correlate with
each other negatively or positively.

By using this meta-model, we can easily access the con-
crete descriptions of requirements when we consider char-
acteristics that should be specified. In addition, we can un-
derstand the characteristics well by comparing the require-
ments. When we describe a model for a specific domain,
we can name an instance of “characteristic” but we do not
have to do so. This means we do not have to abstract char-
acteristics by giving names like usability, reliability and so
on.

Currently, we do not take care about intervals and ra-
tios among requirements but simply put the requirements
into order. For example, when we compare requirements,
we never mention that one requirement is twice better than
another. The main reason is that it is difficult to introduce
intervals and ratios for comparing requirements in general.
On the other hand, we have several techniques to put re-
quirements in order as mentioned in section 4.2.
2.2 Example of a Model

We show an example of a model based on the meta-
model above. In Figure 3, we show a typical example of
a model and also show how to express a correlation. For
convenience, we use use-case diagrams for representing ex-
isting systems and their requirements. We also annotate a
two-dimensional chart as a supplementary explanation for
the correlation. Figure 3 is an extended version of Figure 1,
thus the application domain of Figure 3 is the same as the
domain in Figure 1. We added two instances of “require-
ments group” and an instance of “negative correlation”. Be-



register users

(up to 106 users)

change password

(within 1.0 sec)

System B
register users

(up to 109 users)

change password

(within 10.0 sec)

System C

register users
(up to 1000 users)

change password

(within 0.5 sec)

System A

:Requirements Group
large number of users is preferred.

:Requirements Group
quick response is preferred.

HighMiddleLow

Middle LowHigh > >

< <

F
G

H

X
Y Z

capacity of 
the system:

Characteristic

response:
CharacteristicNegative 

Correlation

Z Y X
F

G

H

A
B

C

Figure 3. Typical Example (Extended version in Figure 1)

cause each instance of “requirements group” has an order-
ing criterion like “large number of users is preferred”, we
can easily understand what is regarded as important or pre-
ferred about the group. Because each instance of “require-
ments group” also corresponds to an instance of “charac-
teristic”, we can well understand each characteristic. An
instance of “correlation” is explicitly represented in Figure
3, and its intuitive meaning is a two-dimensional chart in the
Figure. In this case, two requirements groups are mutually
correlated, thus we should reconsider a characteristic about
“change password” when the characteristic about “register
users” is changed

We explain how to decide whether two requirements
groups correlate or not by using the example in Figure 3.
In the example, requirements F, G and H are put in order as
H > G > F with respect to a criterion “large number of
users are preferred”. Thus, we line up the requirements on
the vertical axis in the chart according to the ordering. We
also line up X, Y and Z in the same way on the horizontal
axis. Because F and X are parts of System A, an intersec-
tion point of F and X on the chart denotes System A. Other
intersection points also denote the corresponding Systems.
As we can see, the two ordered sets {F, G, H} and {X, Y,
Z} appear to be closely related. Thus we assume two re-
quirements groups corresponding to the sets correlate with
each other. Note that we do not calculate and test correla-
tion coefficient strictly because plots here are based not on
interval/ratio scale but on ordinal scale.

3. Usage of a Model
We explain how to use a model for a specific domain.

3.1 Elicitation in General
In Figure 4, we depict how to elicit requirements for a

new system with the help of the model. Because the model
includes the list (or the set) of characteristics that should be
specified or taken into account in the application domain,

Advise 
Characteristics

To-be System

A Model
for a Domain

Characteristics that 
should be specified.

Need Software
for ...

List of
Characteristics

Figure 4. Requirements Elicitation by using
Characteristics

Predict
Side Effects

Current System

To-be System

Change Request

A Model
for a Domain

Intended
Change

Characteristics that 
should be reconsidered

Correlations
among Characteristics

Figure 5. Predicting Side Effects by using Cor-
relations

at least requirements for such characteristics should be dis-
cussed during requirements elicitation. When stakeholders
such as customers and/or users have not clearly understood
their own needs and/or preferences yet, the criterion in each
requirements group will help them to understand and decide
them. In addition, stakeholders can know each characteris-
tic is stable or unstable, mandatory or optional because they
can know the current tendency for each characteristic to be
decided by referring a set of requirements related to each
characteristic.

3.2 Handling Change Requests
In Figure 5, we depict how to handle change requests

from stakeholders by using a metaphor. In the Figure, the
body color of the diskette is requested to change black to
white, and the request should be satisfied. In addition, we
should explore side effects caused by the change request.



Y X Z

H
F

G

C
A

B

Z+

Change Request

or
Warn the requester(s) 
to examine H-.

Induce H-, 
that does not exist in the model.

H-

Figure 6. Induction by a Correlation

In this Figure, two side effects are depicted; the color of a
label and the color of a shutter.

If such side effects are not taken into account, two
kinds of problems could occur. One is about incorrect-
ness. For some reasons, e.g., logical, physical, political,
legal and/or organizational constraints, one change requires
another changes. For example in Figure 1, if the number of
users is requested to change 1000 to 109, the response ca-
pability for changing passwords will largely decline. If ana-
lysts and stakeholders overlook this point, the to-be-system
could have bad response capability and such characteristic
will not meet the needs for stakeholders. We can avoid such
bad capability by several ways, for example, funding more
money or introducing excellent technologies. However, in
the requirements analysis step, we have to recognize such
situation and have to decide how to handle it. Our model
and method will contribute to such recognition. Another
is about inconsistency. If two contradict or incompatible
requirements are requested, the to-be-system cannot be re-
alized or it takes a lot of costs and/or efforts to realize the
system. Thus, one of such requirements should be given up
or we have to explore some compromise or backup plan in
the requirements analysis phase.

The correlations among characteristics will help us to
find problems about incorrectness and inconsistency, be-
cause the correlations are calculated from the existing sys-
tems in a domain and a to-be-system will have similar char-
acteristics.

3.3 Handling Changes by Induction
We finally introduce induction about characteristics. In

general, a requirement about a characteristic does not di-
rectly correspond to an existing requirement in a model. For
example in Figure 1, the number of users could be requested
as 3000, 30 or 1030, and there is no such requirements in the
model directly corresponding the request. Thus, we cannot
predict side effects caused by such request now.

For overcoming such cases, we introduce induction
about characteristics. Figure 6 depicts an example of in-
duction. As shown in the Figure, we can propose two kinds
of results, inducing side effects or warning the requester to
examine the effects.

Suppose a change request, say Z+, does not correspond
to existing requirements in the model as shown in the Figure
6. Then we induce expected requirements, say H− along
with the procedure of linear regression as shown in Figure

6. If H− is an impossible requirement without any special
considerations, we have to warn the requester that Z+ could
cause impossible effect(s). When the requester has received
such warnings, he/she and analysts have to explore alterna-
tives or extra, e.g., additional machines, to resolve the prob-
lem. If H− can be possible, we also report that induced side
effect is H− and make stakeholders to accept the effect or
not.

Because we do not use interval scale for ordering, we
are not allowed to use linear regression procedure. How-
ever, we use the procedure because our goal is to explore
the possibility and tendency about side effects and we do
not have to exactly induce the effects.

4. Method to Build a Model
Whether we can elicit requirements effectively or not

largely depends on the availability of a model. For exam-
ple about such availability, new knowledge should be easily
added in an existing model, i.e., the model should be scal-
able with respect to the number of existing systems. Here
we explain how to develop a model and show that a model
can be developed easily and the model is scalable.

4.1 The Procedure
Basically, a model is developed along with the following

steps.
1. Collect resources about each system belonging to a do-

main. The examples of resources are help files, manu-
als and the system itself.

2. Identify requirements such as functions or attributes of
each system. Writing use-case diagrams is useful for
this step. We may use requirements that are already
identified in other systems when identifying them in a
system that is not processed.

3. Make an instance of a requirement group with a set of
requirements. As mentioned in step 2, already identi-
fied requirements are used to identify them in a system,
thus, similar requirements are already grouped in gen-
eral.

4. Find a criterion to distinguish between such require-
ments. We normally represent a criterion in the form
of “XXX is preferred”. In step 2, we have already iden-
tified such criterion in general because we compare a
requirement with similar requirements.

5. Make an instance of a characteristic and relate the in-
stance to an instance of a requirement group. We may
give a name to the instance of a characteristic so as to
easily identify the characteristic, e.g., usability, relia-
bility and so on.

6. Put requirements in order with respect to the identified
criterion.

7. Calculate correlations among the instances of require-
ments groups by comparing the ordering of each re-
quirements set.



4.2 Techniques for Comparison and Ordering

Comparison between requirements plays an important
role in this method. Currently, we use the following tech-
niques for comparison.
• Focusing on the numeric attributes in requirements:

When each requirement has numeric attributes, we can
naturally compare a requirement with other similar re-
quirements. The typical examples are “the number of
users” and “the response time” in Figure 3.

• Surroundings in a use case [8]: When use case dia-
grams for existing systems can be available, we can use
structural similarity about a requirement (a use case).

• Specification matching [12], [7]: When we regard each
requirement as a function, the requirement has pre-
conditions and post-conditions. We use logical im-
plication among pre-conditions and/or post-conditions
for comparison.

• Use Case Points [11]: When we want to focus on the
usability about some functionality, behavioral or inter-
active aspect is important. Because use case points
mainly focus on the number and extent of interaction
between a system and external things, we can use use
case points technique to compare requirements with
respect to interactive aspect.

• AHP [10]: We sometimes want to put requirements in
order with respect to a preference of specific users. In
such a case, AHP technique is useful because we can
put requirements in order subjectively and systemati-
cally.

We may of course use several techniques together for a
requirements group. We may also use the other techniques
for comparison. From our experiences, identification of re-
quirements and comparison between them mutually com-
plement with each other. In other words, we can effectively
identify requirements in existing systems when we compare
the resources of each system.

Consequently, we mainly focus on so-called non-
functional aspects when we put requirements in order.
However, we do not emphasize that point because our or-
dering framework can be applied to functional aspects in
requirements. Actually, functional and non-functional char-
acteristics are not distinguished in ISO quality standards [6].

4.3 Scalability

Apparently, the characteristics that should be considered
would increase when knowledge in new existing systems
is added to an existing model. Especially, we could ex-
plore new criteria for evaluating existing functionalities or
attributes when we compare a function with other similar
functions.

If we calculate correlations between characteristics by
using small number of systems, there are many correlated
pairs that have no causal or semantic relationship in fact. If
there are a lot of such pairs, we cannot efficiently check side

D1: Software A’s Documents

P1: Identify
Req. Groups

D4: Req. Groups from A

D2: Software B’s Documents

P2: Identify
Req. Groups

D5: Req. Groups from A,B

D3: Software C’s Documents

P3: Identify 
Req. Groups

D6: Req. Groups from A,B,C

P4: Calculate 
Correlations

D7: Candidates of 
Correlations from A,B

P5: Calculate 
Correlations

D8: Candidates of 
Correlations from A,B,C

P6: Check
Validity

P7: Check 
Improvement

Figure 7. Work Flow of Case Study
effects among characteristics. However, such kind of pairs
could be reduced when the number of systems increases.
The reason is that coincidental correlations would be re-
duced by the many facts in existing systems. We will con-
firm this point in the next section. Hopefully, correlations
between characteristics can be calculated systematically, we
do not mind that the number of characteristics increases.
Even if the number of such pairs is not reduced, we may
reject the consequences from the pairs. We intend to detect
causal relationships or side effects not automatically but in-
teractively.

5. Case Study

We want to confirm the following hypotheses.
• It will be easy to develop a model by comparing several

existing systems.
• The model will contribute to know mandatory, optional

and unstable characteristics in a domain.
• Correlations between characteristics will be useful to

find causal relationships among the characteristics.
• Quality of correlations will be improved when the

number of existing systems increases.
The case study here is designed to confirm the hypotheses
above.

5.1 Design of A Case Study

Figure 7 shows the workflow of this case study written
in Data Flow Diagram. We mainly explain each process in
the workflow as follows.

• An analyst obtains documents of three pieces of soft-
ware, which belong to the same application domain.
We call these documents as D1, D2 and D3.

• (Process P1) By reading D1, the analyst identifies re-
quirements groups and their corresponding criteria and
characteristics. As a result, the analyst obtains several
requirements groups, so called D4. Because D4 is gen-
erated from only one piece of software, these are no or-
derings in each requirements group. Thus, we cannot
discuss correlations in this step.



pattern-h1

high

middle

low

pattern-h2 pattern-h3

pattern-m

pattern-l

none All other cases, called pattern-n

void

pattern-v

Two nodes are overlapped. 

Two nodes are overlapped. 

Three nodes 
are overlapped. 

Figure 8. Patterns of Requirements Groups’
Pairs (Positive Cases Only)

• (Process P2) By reading D2 and D4, the analyst does
the same tasks above. As a result, the analyst obtains
extended requirements groups, so called D5.

• (Process P3) By reading D5 and D3, the analyst also
does the same tasks above. As a result, the analyst
obtains more extended requirements groups, so called
D6.

• (Process P4) By using D5, the analyst calculates corre-
lations about all pairs of requirements groups. We call
the data of such correlations as D7. Because D5 is gen-
erated from two pieces of software, patterns of corre-
lations are pattern-h1, pattern-n or pattern-v in Figure
8. We will explain Figure 8 in detail below.

• (Process P5) By using D6, the analyst calculates corre-
lations about all pairs of requirements groups. We call
the data of such correlations as D8. Because D6 is gen-
erated from three pieces of software, patterns of corre-
lations are pattern-h2, pattern-h3, pattern-m, pattern-l,
pattern-n or pattern-v in Figure 8.

• (Process P6) By reading the contents of D7 and D8,
the analyst checks whether generated correlations meet
our intuition or not, as shown in Figure 9.

• (Process P7) By comparing D7 and D8, the analyst
checks whether the quality of such correlations is im-
proved or not. We will explain how to check it by using
the Figure 10 below.

We regard charts in Figure 8 as patterns of requirements
groups’ pairs, and patterns corresponding to the first 10
charts (pattern-h1 to pattern-l) are regarded as correlations.
Negative correlations are also represented in the same way.
These are 16 charts in this Figure and each chart is writ-
ten in the same way as a chart in Figure 3. Along with the
progress of P2 and P3, some correlated pairs could become
uncorrelated pairs (pattern-n). In addition, some uncorre-
lated pairs in D5 could also become correlated pairs because
we regard patterns like pattern-h3, pattern-m and pattern-l

RG1 RG2

h
RG3

n
RG4

lRG1

RG2

RG3

RG4

v

h

m

RG1 RG2

Y
RG3

Y
RG4

YRG1

RG2

RG3

RG4

-

N

M

non low middle high

No Good Uncertain Bad Bad
Maybe Uncertain Good Good Uncertain
Yes Bad Uncertain Good Good

Intuitive
Decision

Calculated Correlation

Compare
Calculated 
Correlations

Intuitive 
Decision

Rules

Good 2
U ncertain 1
Bad 2

Figure 9. Validation of Correlations
RG1 RG2

X
RG3 RG4 RG5 RG6

RG1

RG2

RG3

XRG4

RG5

RG6

XX

RG1 RG2

X
RG3 RG4

XRG1

RG2

RG3

RG4

XX

6.0
6

4 = 3.0
6

2 =

26.0
15

4 =
(P) (Q)

(R)
= pattern-h, m or l 

in Fig. 9
X

noise-pairs(D7) (D8)

Figure 10. Noise Reduction in Correlations

as correlated pairs.
We will check whether calculated correlations are valid

or not in the same way as an example in Figure 9. As shown
in Figure 8, correlations are categorized into high, middle,
low, void or none. Separately from the correlations, some
domain expert evaluates each pair of requirements groups
whether the pair is really related (Yes), never related (No)
or else (Maybe). By comparing the category of correlations
with intuitive decision by the expert according to the rules
in Figure 9, we validate the correlations. Note that we do
not take care correlations in pattern-v.

Finally, we explain how to check the improvement of
correlations’ quality along with the progress of P4 and P5
by using an example in Figure 10. We assume there are
many correlated pairs that have no causal or semantic rela-
tionship in fact. We call such pairs as noise-pairs. If there
are many noise-pairs, the efficiency for detecting incorrect-
ness and inconsistency goes down. We also assume the
number of such noise-pairs will decrease when the num-
ber of existing systems increases. Therefore, we focus on
the changes of the correlated pairs’ rate for confirming the
improvement of the quality of correlations. In this exam-
ple, D5 has four requirements groups and D6 has six be-
cause two new groups are found in P3. We have to check
60% (labeled by (P) in Figure 10) of all possible pairs in
D7, whether each pair is related semantically or not. On
the other hand, we may only check 30% or 26% (labeled
by (Q) or (R)) because two noise-pairs are reduced in D8.
There are two interpretations about this noise reduction. In
the first interpretation, we focus on the changes from (P) to
(Q), and rate of noise-pairs that have already existed in D7
are reduced. In the second interpretation, we focus on the



Table 1. Sizes of Software D1, D2 and D3
D1 D2 D3

Number of Pages 4 20 102

Table 2. Numbers of Requirements Groups:
D4, D5, D6

not dispersed

D4 (from D1) 17 17
D5 (from D4 and D2) 25 4
D6 (from D5 and D3) 33 3

changes from (P) to (R), and rate of noise-pairs out of all
possible pairs are reduced.

5.2 Result
In this case study, an application domain about software-

music-player was selected. One of the authors played a role
of an analyst in this case study. He was a graduate school
student and well knew the domain. He downloaded three
pieces of such software via a web site 1. We could use
these players without a fee on the windows PC. Each piece
of software included user manuals written in windows help
format (.hlp or .chm), and he used the manuals as D1, D2
and D3. For convenience, he converted the manuals into
PDF format. He also wrote use case diagrams for each
player to understand them well. The sizes of the manuals
are shown in Table 1. Each manual had descriptions how to
use the player and descriptions of changes and updates.
• result 1: Table 2 shows the results about D4, D5 and

D6, the numbers of identified requirements groups in
each step. The right most columns in the Table show
the numbers of groups where requirements were not
dispersed. Dispersed requirements here mean at least
one requirement is different from others. Thus a re-
quirements groups’ pair is categorized into pattern-v
in Figure 8 when one of the requirements groups in the
pair does not have dispersed requirements. Apparently,
all groups in D4 could not have dispersed requirements
because only one piece of software was handled in D4.
In the cases of D5 and D6, there were a few groups
without dispersed requirements.

• result 2: The analyst could easily identify require-
ments groups in P2 and P3 because he could compare
a requirement with others. In other words, he could
know characteristics and criteria corresponding to each
group. On the other hand, he only listed up main func-
tionalities in P1. He always used the techniques in Sec-
tion 4.2 and the most used one was “surroundings”.

• result 3: He found several requirements (functions)
that could not be related to any requirements groups
because the requirements were supported only one
piece of software. Note that the number of require-
ments in a requirement group should be more than two

1http://www.vector.co.jp/download/
We can get many kinds of software via this web site without a fee.

Table 3. Validation of Correlation
D7 (from D1, D2) D8 (from D1, D2,

D3)

Num. of Groups 25 33
Number of Possible
Pairs (α)

300 528

Num. of Pattern-v in
Fig. 9 (β)

90 93

α − β ⇒ Total 210 (100%) 435 (100%)

Good 50 (24%) 137 (32%)
Uncertain 32 (15%) 158 (36%)
Bad 128 (61%) 140 (32%)

by definition in Figure 2. At least, he found seven ex-
amples of such requirements.

• result 4: As mentioned in result 1 and Table 2, there
were several requirements groups without dispersed
requirements. The analyst investigated the contents of
requirements and found that characteristics and criteria
corresponding to such groups seemed to be mandatory
in this domain. Examples are “playing a tune at once”
and “supporting a list of tunes”.

• result 5: On the contrary, the analyst found that there
were groups where all requirements were completely
different. In many cases, two requirements were simi-
lar but another was different with respect to a criterion.
However, he found all three requirements were differ-
ent with each other. He investigated the contents of
such cases and found that characteristics correspond-
ing such requirements groups seemed to be unstable in
this domain. Examples were “displaying the status of
software (e.g., name of the tune of time passed)” and
“look and feel (usually called skin)”.

• result 6: The analyst investigated the contents of pairs
of requirements groups that had a correlation. Most
pairs were seemed to have causal relationships with
each other. For example, a pair “displaying the status
of software is preferred to be complicated” and “sup-
port for quick operations (usually called shortcut) are
preferred” was correlated with each other, and these
characteristics seemed to have causal relationships.

In the same way in Figure 9, the analyst validated
the correlations. Table 3 showed the results. Correla-
tions in D8 were better than those in D7 because the
ratio of “Good” increased (from 24% to 32%) and the
ratio of “Bad” decreased (from 61% to 32%).

• result 7: According to the example in Figure 10, the
analyst checked whether correlations’s quality was im-
proved along with the increase of the number of exist-
ing systems. The results are summarized in Table 4.
He did not apply any statistical tests about this result,
but he could know the tendency that the quality was
improved ((P) > (Q), (P) > (R)). He checked the
contents of noise-pairs and almost all the noise-pairs
seemed to be unrelated semantically or causally.



Table 4. Resuls of P7: Noise Reduction about
Correlations (See Fig. 7 and 10)

D7 (from
D1, D2)

D8 (from D1, D2, D3)

Num. of Groups 25 33
Number of Possible
Pairs (α)

300 528

Number of Correlated
Pairs (γ)

210 155 362

Rate of Correlations
γ/α

0.70 (P) 0.52 (Q) 0.69 (R)

5.3 Discussion
From the result of this case study, we can intuitively con-

firm most hypotheses. Especially, comparison among sim-
ilar functions or attributes, that is one of the main ideas of
this study, seems to be useful. Techniques for ordering re-
quirements in Section 4.2 are also useful. Because use case
diagrams were written in this case study, the technique of
“surroundings” would be frequently used. However, we find
a problem. We sometimes cannot put requirements in total
order but in partial order. As shown in our meta-model in
Figure 2, requirements are basically put in total order. Ac-
cording to the result in this case study, we will modify our
meta-model.

Correlations between characteristics seem to be also use-
ful to find causal relationships or side effects as shown in the
result 6, especially correlations calculated from three exist-
ing systems. From the results 6 and 7, correlations seem to
be scalable because the validity and quality are improved
along with the increase of the number of existing systems.

6. Related Work
One of the famous researches for handling software char-

acteristics is QFD [5]. In QFD, relationships among stake-
holders’ requirements and software characteristics are re-
lated for developing suitable software. We think it is not
so easy to identify such characteristics, thus we focus on
exploring such characteristics.

Our approach consequently deals with software quality
characteristics. Actually, we inspired the description in
ISO standards [6]. Our approach also consequently han-
dles non-functional requirements [2]. However, we do not
mentioned in this point because our approach also handles
functional requirements. The selection for comparison tech-
niques such as in Section 4.2 will depend on whether a char-
acteristic relates to functional aspect or non-functional one.

There are several researches about domain knowledge.
For example in FODA [9], method to identify the distinc-
tive characteristics (features) of a specific domain was pro-
posed and one of the basic concepts of FODA was abstrac-
tion. On the other hand in our approach, our basic con-
cept is comparison. LEL [4] also focused on the acquisition
for domain knowledge, and an approach based on natural
language processing was used. Our method is mainly de-
signed for handling correctness, completeness, consistency

and unambiguity, but LEL was not explicitly intended for a
specific purposes.

Prioritization techniques such as DDP [3] and WinWin
[1] will be also incorporated with ours because we need var-
ious kinds of comparison and ordering techniques.

7. Conclusion
In this paper, we propose the model and the methods for

using and constructing a domain model. With the model, we
can elicit requirements correctly, consistently, completely
and unambiguously. Our model and methods are based on
the comparison among existing systems in the same do-
main, and the method to build the model is scalable. In
other words, validity and quality of the model can be im-
proved along with the increase of the number of existing
systems. From a case study, we partially confirmed the use-
fulness of our model and methods. Because there are sev-
eral procedures that could be automatically calculated in our
methods, CASE tools could be useful for our methods. Ac-
tually, the analyst in the case study felt that supporting tools
were required.

References
[1] B. Boehm, et al. Developing Groupware for Requirements

Negotiation: Lessons Learned. IEEE Software, 18(3):46–
55, May/Jun. 2001.

[2] L. Chung, et al. Non-functional Requirements in Software
Engineering. Kluwer Academic Publishers, 2000.

[3] S. L. Cornford, M. S. Feather, J. C. Kelly, T. W. Larson,
B. Sigal, and J. D. Kiper. Design and Development Assess-
ment. In Proceedings of IWSSD’00, pages 105–114, 2000.

[4] J. C. S. do Prado Leite and A. P. M. Franco. A Strategy
for Conceptual Model Acquisition. In Proceedings of RE93,
pages 243–246, 1993.

[5] G. Herzwurm, S. Schockert, and W. Pietsch. QFD for
Customer-Focused Requirements Engineering. In Proceed-
ings of RE’03, pages 330–338, Sep. 2003.

[6] International Standard ISO/IEC 9126-1. Software engineer-
ing - Product quality - Part 1: Quality model, 2001.

[7] H. Kaiya and K. Kaijiri. Conducting Requirements Evolu-
tion by Replacing Components in the Current System. In
Proceedings of APSEC’99, pages 224–227. Dec. 1999.

[8] H. Kaiya, A. Osada, and K. Kaijiri. Identifying Stakehold-
ers and Their Preferences about NFR by Comparing Use
Case Diagrams of Several Existing Systems. In Proceedings
RE’04, pages 112–121, Sep. 2004.

[9] K. C. Kang, et al. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-
TR-21 ESD-90-TR-222, CMU, Nov. 1990.

[10] T. L. Saaty. The analytic hierarchy process: planning, pri-
ority setting, resource allocation. RWS, 1990.

[11] G. Schneider and J. P. Winters. Applying Use Cases: A Prac-
tical Guide. Addison-Wesley, 2nd edition, 2001.

[12] A. M. Zaremski and J. M. Wing. Specification Matching
of Software Components. ACM Trans. Software Eng. and
Methodology, 6(4):333–369, Oct. 1997.


