
Identifying Stakeholders and Their Preferences about NFR
by Comparing Use Case Diagrams of Several Existing Systems

Haruhiko Kaiya Akira Osada Kenji Kaijiri
Dept. of Computer Science, Shinshu University

4-17-1 Wakasato, Nagano 380-8553, Japan
kaiya@cs.shinshu-u.ac.jp csada@cs.shinshu-u.ac.jp kaijiri@cs.shinshu-u.ac.jp

http://www.cs.shinshu-u.ac.jp/˜kaiya/

Abstract

We present a method to identify stakeholders and their
preferences about non-functional requirements (NFR) by
using use case diagrams of existing systems. We focus on
the changes about NFR because such changes help stake-
holders to identify their preferences. Comparing different
use case diagrams of the same domain helps us to find
the changes that can occur. We utilize the Goal-Question-
Metrics (GQM) method to identify variables that charac-
terize NFR. Thus, we can systematically represent changes
about NFR using the variables. The use cases that represent
system interactions help us to bridge the gap between goals
and metrics (variables). Thus, we can easily construct mea-
surable NFR. In order to illustrate and evaluate our method,
we applied our method to an application domain of the Mail
User Agent (MUA) system.

Keywords

Requirements Elicitation, Non-Functional Requirements
(NFR), GQM, Stakeholders and their Preferences, Use Case
Diagrams.

1. Introduction

We present a method to identify stakeholders and their
preferences about non-functional requirements (NFR) by
using use case diagrams of the existing systems. The result
of our method can be used to prioritize NFR, for example, in
order to maximize the preferences of all stakeholders. Since
the policy on prioritizing NFR depends on each project, we
do not handle such policies in this method.

In the field of requirements engineering, stakeholders are
regarded as ‘all those who have a stake in the change be-
ing considered, those who stand to gain from it, and those
who stand to lose from it’ [15]. Therefore, ‘a stakeholder is
much more than a product’s eventual user’ [3].

It is important to understand the stakeholders’ prefer-
ences when eliciting the requirements. The preferences of

stakeholders are largely related to NFR and/or quality re-
quirements. On the other hand, the functions of a system
are fundamental characteristics and they are relatively sta-
ble. For example, an airplane without the flying function is
NOT an airplane. This is not a matter of preference. In case
of airplanes, one airplane may fly with a high speed and
another may fly safely with a low speed. Here, both per-
form the function of an airplane; however, speed is a matter
of preference. One person may prefer high speed, but the
same may not hold true for another person.

In general, it is not easy to decide whether or not one
prefers one of the NFR; however, one can easily decide
one’s preference when one of the NFR is changed. For ex-
ample, we can clearly state the preference for performance
requirement when an airplane flies faster than before. Thus,
we focus on the changes about NFR in our research.

Changes about NFR can be characterized by the changes
of variables. In the case of an airplane’s performance,
its speed can be a variable. Such variables characterize
more than one NFR in general. Therefore, changes in such
variables can help stakeholders discover other unidentified
NFR.

Goal-Question-Metrics (GQM) [4] is a method to iden-
tify the data that can be used to understand how a system
achieves its goals. We utilize GQM to represent the changes
in NFR because the metrics in GQM can be regarded as
measurable and changeable variables for NFR.

Since NFR, or in other words conditions, should be
measurable in well-formed requirements [1], such variables
should contribute to the construction of well-formed re-
quirements. Soft goals [6], which are not measurable, are
also important in capturing NFR. However, stakeholders
cannot decide their preferences only by referring to soft
goals.

In GQM, deriving metrics from goals via questions is not
easy because goals are relatively more abstract than met-
rics. This is one of the difficulties encountered in the GQM
method. In this research, we use requirements specifica-

112

tions of existing systems as hints to bridge the gap between
goals and metrics. Since such specifications include system
interactions [9], it is easy to ascertain metrics that have to be
focused on. Goals can be also assumed from such specifica-
tions, and we do not have to be concerned with whether the
derived goals are the goals of actual users and developers,
because we do not focus on reverse engineering but on re-
quirements elicitation. Using such existing systems, we can
easily validate and/or confirm system functionalities and/or
non-functionalities.

We employ use case diagrams in UML to represent the
existing systems. The first reason is that, currently, use case
diagrams are the defacto standard to represent functional
requirements. The second reason is that the diagrams use
the concept of actors, which can be the first approximation
of stakeholders. The third reason is that there are several
techniques to construct use case diagrams and other related
diagrams from the existing systems in the field of reverse
engineering [18], [11].

In Section 2, we present concrete steps to carry out our
method for eliciting NFR, stakeholders and their prefer-
ences. An example that uses our method is shown in Section
3. Finally, we summarize our current results and identify
future work required.

2. Method
2.1 Terminologies and Notions

We introduce terminologies and notions for our method
before introducing the procedure.

Use case diagrams and use cases are the same as those in
UML.

System interactions and user goals are mentioned in [9].
These are two different styles in which the use case
represents functionality. When use cases are written
as system interactions, they represent the manner of
interacting with the system. On the other hand, use
cases represent the goals that are achieved when they
are written as user goals.

Since our method starts with the existing systems,
we use the system interaction style. It is easy to write
in such a style because the systems already exist and
we may execute them if needed.

Similarity of applications are basically decided subjec-
tively. However, the number of similar actors and sim-
ilar use cases will help in determining it. We may re-
fer to pre-existing categories for applications in shops,
catalogs, and/or web sites. When several applications
are similar to each other, such a set of applications is
called an application domain.

Similarity of actors and of use cases may be decided
subjectively. However, words used in the specification
of actors and use cases help decide it. In addition,
use cases related to the same kinds of actors could be

X

An use case

BA

System P

C

Y X

An use case

ED

System Q

C

Y

<<include>>
<include>><<include>> <include>>

<<extend>>
<<extend>>

Figure 1. Example of Differences between
Two Surroundings

similar to each other.
The surrounding of a use case is a set of use cases di-

rectly connected to the use case by extend- or include-
relationships and a set of actors directly connected to
both the use case and connected use cases.

Differences among the surroundings of a use case
consist of the use cases that are not included in the
intersection of the surroundings.

In Figure 1, we have a small example of differences
between two surroundings. We focus on a use case
and identify the surroundings of the use case, one is
in the system P and the other in system Q. In system
P, it consists of actor X and Y and the use cases A, B,
and C. In system Q, it consists of actors X and Y and
the use cases D, E, and C. Therefore, the differences
between the surroundings of the use case are use cases
A, B, D, and E.

NFR taxonomy is a catalog of non-functional require-
ments in general. Currently, we use the software qual-
ity attributes provided in the ISO standard for software
quality [12] and NFR types [6]. We will briefly intro-
duce the contents of NFR taxonomy in the next sec-
tion. NFR taxonomy helps us determine the goals of
use cases in the differences among the surroundings.

Variables characterize a use case and differences among
the surroundings of the use case. The variables should
be both named and typed. For example, because ‘the
speed of the train’ characterizes a use case of the train
control system, we regard it as a variable. We name
the variable as ‘vSpeed’ and type it as natural number
(0, 1, 2, 3 · · ·).

Each type suggests the manner in which the variable
can be changed. We can represent such a change of a
variable in several ways.

• A change is represented by the assignment of val-
ues as in C or Java programs.

• A change is represented by denoting a pair of old
and changed values as follows:

var1 : old value → new value
• A change is represented only by the changed

113

value when we do not need the old value as fol-
lows.

var1 : ∗ → new value
• We may simply explain the change with words or

sentences as follows.
var1 : increase
var2 : x becomes a member of var2.

Currently, we use the following types and each type
has the following notations for relative changes.

• nat: natural number. Two kinds of changes:
var + + means ‘var is increased’.
var −− means ‘var is decreased’.

• boolean: true or false.
• set: enumeration of values. When var2 is typed

with {x, y, z, ...}, changes can be represented as
follows:
var2 = x means ‘var2 becomes x’.
var2 = y means ‘var2 becomes y’.
var2 = z means ‘var2 becomes z’.

• pset: subset of variables. Since values in this
type are represented by a power set of the set,
we denote this type as pset. When var3 :
pset of people, these kinds of changes can be
used:
var3 = {} means ‘var3 becomes empty’.
var3 � Jone means ‘Jone becomes a member
of var3’.

We may use general operators for sets or natural num-
bers, e.g., ∪,⊂ or +,−,×.

Invariants among variables are mainly used to represent
the correlation between variables. Currently, we use
the following operators to show the invariants.

• x ∼ y: when the variable x is increased the vari-
able y is also increased, and vise versa.

2.2 NFR Taxonomy

As mentioned above, we use NFR taxonomy to deter-
mine the goals of the use cases written in user interaction
style.

We mainly use the software quality attributes provided in
the ISO standard for software quality [12] for this purpose.
The attributes are as follows.
• Functionality: Suitability, Accuracy, Interoperability,

Security, Compliance.
• Reliability: Maturity, Fault tolerance, Recoverability,

Compliance.
• Usability: Understandability, Learnability, Operabil-

ity, Attractiveness, Compliance.
• Efficiency: Time, Resource, Compliance.
• Maintainability: Analysability, Changeability, Stabil-

ity, Testability, Compliance.
• Portability: Adaptability, Installability, Co-existence,

Replaceability, Compliance.

Since the attributes are insufficient, especially for secu-
rity, we also use NFR types [6]. The NFR types are as fol-
lows.
• Performance

– Time: Response Time, Throughput, Process
Management Time

– Space: Main Memory, Secondary Storage
• Cost
• User-friendliness
• Security

– Confidentiality
– Integrity: Accuracy, Completeness
– Availability

2.3 Procedure
We will now demonstrate the steps in our method by

using the terminologies and the notations discussed above.
The inputs for this procedure are manuals and/or help files
of the existing applications and/or systems. You may em-
ploy use case diagrams for such applications if they already
exist.
Step 1: Write or obtain use case diagrams of several sys-

tems. The systems should belong to the same and/or
similar application domain. Use cases in the diagrams
should be written as the system interaction, and not as
the user goals.

Step 2: Find common and/or similar use cases in the use
case diagrams of several systems. Such use cases do
not have to be included in all diagrams.

Step 3: For each use case determined in Step 2, find the
differences among the surroundings of the use case in
the diagrams.

Step 4: Identify variables that characterize the use cases
and their differences in Step 3. Decide the type of each
variable so as to construct the changes of the variables.

Step 5: Identify stakeholders and their preferences about
NFR based on Figure 2.

Use Case

Change of Variables

Preference and Reason

Stakeholder

Goal

NFR

NFR Taxonomy1

*

*

1

+

1

1

+

Variable and Type
*

+

Figure 2. Simple Class Diagram for the Stake-
holders, their Preference, and NFR

Classes represented in normal boxes in Figure 2

114

have been created or prepared before this step. Using
these classes, we identify other classes represented in
dashed boxes in Figure 2.

1. Identify instances of ‘Change of variables’.
Since the variables are typed in the previous step,
we can identify them systematically.

2. Identify instances of ‘Stakeholder’ and ‘Pref-
erence and Reason’ related to an instance of
‘Change of variables’. The intuitive meaning of
the instances is that ‘When several variables are
changed in a certain way, a stakeholder prefers
the change because of some reason’. We should
identify them subjectively. However, we may in-
terview real customers and related people by dis-
playing the use case with such variables.

3. Generalize the instances of ‘Preference and Rea-
son’ into NFR. We may refer to the taxonomy of
NFR to make this generalization.

As shown in Figure 2, there can be several different
instances of ‘change of variables’ for each use case.
Therefore, Step 5 can be applied several times for each
instance of ‘change of variables’.

Step 6: Since object diagrams that are the instances of a
class diagram in Figure 2 tend to become very complex
to be read easily, we use the following form of matrices
instead of the diagrams.

This matrix is written for each instance of ‘Change
of variables’, it summarizes each stakeholders’ prefer-
ences about each NFR.

a change NFR1 NFR2 . . .
Stakeholder1 pref11 pref12 . . .
Stakeholder2 pref21 pref22 . . .
...

...
...

...
Each cell is occupied by an instance of ‘Prefer-

ence and reasons’ that represents whether stakeholder i

prefers NFRj or not. When stakeholderi is not inter-
ested in NFRj , the corresponding cell may be empty.
Concrete examples of this matrix are shown in the next
section.

As a result, we identify stakeholders that are not actors,
their preferences about NFR and the NFR that have not been
previously mentioned.

3. Example
For illustrating and evaluating our proposed method, we

will show an example. The application domain is Mail User
Agent (MUA) systems, in other words, a Mailer. Although
MUA is not a very large system, MUA systems are realistic
and important applications today. There are many different
MUA systems all over the world.

3.1 Existing Systems of MUA
In this example, we select four MUA systems: Outlook

Express, The RAND MH System [21], AL-Mail [2], and

Receive messages

Read messages

Send messages

Write messages
Receive user

Send user

Send server
(MTA)Receive server

MUA (Mail User Agent)

user

Figure 3. Use Case Diagram of MUA in General

User

Receive user

Send user

Receive server
Send server

(MTA)

Other
Applications
invoked by
the MUA
(Invoked

Application)

Other MUA

Platform (OS)

Certification Authority
(CA)

Directory Service
(e.g., using LDAP)

MH
Mutt

Internet
Service
Provider

(ISP)

ALMail
OE

Figure 4. Venn Diagram for Actors in Each
System

Mutt [20]. Overview of each MUA is shown in Table 1.
A generic use case diagram for MUA is shown in Figure

3, and all four MUA systems in this example also have such
use cases (functions).

3.2 Use Case Diagrams for Each System: Step 1
of our method

We have described the use case diagrams of four differ-
ent MUA systems. We referred to manuals and/or help files
to describe them. Since the authors use MH, Mutt, and AL-
Mail almost every day, the knowledge of these three MUA
was perhaps complemented. We explicitly described use
cases not as user goals but as system interactions according
to our method. It was easy to describe use cases in such a
manner because the systems already exist, and we may ex-
ecute them as required. This is the first step of our method.

Since each MUA system is designed for different plat-

115

Table 1. Overview of the Existing Systems
System Name Version Release Main Platform Abbreviation used in this Paper User Interface Type Note
Outlook Express 6.00 Oct. 2002 Windows OE GUI Japanese Extension
RAND MH System 6.8.3 1993 UNIX MH Console, Commands Japanese Extension
AL-Mail 1.13 Jun. 2002 Windows ALMail GUI Domestic System
Mutt 1.5.4 Mar. 2003 UNIX Mutt Console, Interactive Japanese Extension

Receive user Receive server

Receive messages

Select folder

Create folder

Filter messages

MH

Receive user Receive server

Receive messages

Select an account

Mutt

Using APOP

Receive user Receive server

Receive messages

Select an account

ALMail

Using APOP

Select multiple accounts at once

Dial-up automatically

ISP
Receive user Receive server

Receive messages

Filter messages

OE

Disconnect
automatically

ISP

Leave messages in server

<<include>>

<<extend>>

Legend

PGP support

PGP support

Logging problems

(1)

(1)

(2)

(2)

Figure 5. Use Cases and Actors around ‘Receive messages’

forms and for different kinds of users, they have a variety
of use cases. We will refer to such differences in Section
3.3. We have identified different actors as shown in Figure
4. This figure is written in a Venn diagram so as to know
the relationships among the MUA systems. The number of
use cases and the number of actors are shown in Table 2.

Table 2. Size for each MUA System
System Number of use cases Number of actors
OE 81 11
MH 38 6
ALMail 72 8
Mutt 53 7

3.3 Steps 2 to 6

In Step 2, we should find as many common use cases
from the four diagrams as possible. However, we only fo-
cus on three common use cases: ‘Receive messages’, ‘Read
messages’, and ‘Import messages’ in this example, because
of the limitation of pages. The main steps of this method
are Steps 3 to 6; these steps are applied to each set of dif-
ferences in a use case. For convenience, we assign serial

numbers to each set of differences in a use case, such as (1),
(2), (3) · · ·.

3.3.1 UC: ‘Receive messages’

Figure 5 shows four partial use case diagrams for each
MUA. In each diagram, use cases directly connected to the
use case ‘Receive messages’ and actors connected to them
are described. For simplicity, we use simple arrows without
stereotypes to show extend- and include- relationships be-
tween use cases. The manner of depicting arrows is shown
in the legend of this figure.

Although we can determine many differences in Figure
5, we discuss the following two differences in these dia-
grams. The differences discussed here are marked by rect-
angles containing numbers in this figure.

(1) Connect/disconnect automatically

Step 3: Identify different use cases.
The use cases ‘dial-up automatically’ in ALMail and
‘disconnect automatically’ in OE are not included in
other systems.

step 4: Identify variables characterizing the differences as
shown in Table 3.

116

Table 3. Variables in (1)
Type Name Meaning and Invariant
boolean vIsAuto Automatically or not
nat vNumCon Number of time connected
nat vNumPas Number of time one’s password

is submitted over the network
vNumCon ∼ vNumPas

Steps 5 and 6: We focus on the three instances of ‘Change
of variables’. We write three matrices for each instance
in Figure 6, 7, and 8. Due to the lack of in the cells in
the matrix, instances are written outside the matrix. On
writing the matrices, we determined three additional
stakeholders and three NFR which are given in a thick-
lined box.

In Figures 7 and 8, two variables are changed simul-
taneously. Similar to these examples, we may focus on
the change of more than one variable.

If we depict these results as object diagrams, it is
difficult to understand them at a glance. For example,
the matrix in Figure 7 can be represented as the object
diagram given in Figure 9.

: Stakeholder

name=“Receive User”
isactor=true

: Pref. and Reason

pref=“yes”
reason=“They can read messages
without additional operations.”

gEasy: NFR

note=“One can receive
messages easily.”

: NFR Taxonomy

main=“Usability”
sub=“Operability”

yes

: Change of Var.

var1=“vIsAuto”
change1=“*->true”

Figure 6. Matrix for vIsAuto in (1)

(2) PGP support

Step 3: Identify different use cases.
‘PGP support’ is implemented in Mutt and ALMail
but not in other systems.

Step 4: Identify variables characterizing the differences as
shown in Table 4.

Table 4. Variables in (2)
Type Name Meaning and Invariant
nat vCrypt Strength of the cryptography
pset vCA Set of agent authenticating identities

no
yes
yes

: Change of Var.

var1=“vIsAuto”
change1=“*->true”

var2=“vNumCom”
change2=“increase”: Stakeholder

name=“Receive
User”
isactor=true

: Stakeholder

name=“Communi
cation Provider”
isactor=false
example=“AT&T”

: Stakeholder

name=“ISP, internet
service provider”
isactor=false

gHiCost: NFR

note=“High cost”

: NFR Taxonomy

main=“Cost”

: Pref. and Reason

pref=“yes”
reason=“We earn money.”

: Pref. and Reason

pref=“no”
reason=“The calling
cost increases.”

: Pref. and Reason

pref=“yes”
reason=“We earn money.”

Figure 7. Matrix for vIsAuto and vNumCom in
(1)

no
yes

: Change of Var.

var1=“vIsAuto”
change1=“*->true”

var2=“vNumPas”
change2=“increase”

: Stakeholder

name=“Receive
User”
isactor=true

: Stakeholder

name=“Intruder”
isactor=false

gLowSec: NFR

note=“Low confidentiality”

: NFR Taxonomy

main=“Security”
sub=“Confidentiality”

: Pref. and Reason

pref=“no”
reason=“Passwords can be
easily stolen.”

: Pref. and Reason

pref=“yes”
reason=“I can easily steal passwords.”

Figure 8. Matrix for vIsAuto and vNumPas in
(1)

Steps 5 and 6: We focus on the two instances of ‘Change
of variables’. We write two matrices in Figure 10 and
11. On writing these matrices, we determined one ad-
ditional stakeholder and four NFR.

3.3.2 UC: ‘Read messages’

Figure 12 also shows four partial use case diagrams for each
MUA around a use case ‘Read messages’. We discuss the
following two differences in these diagrams.

(3) Read messages directly from the server

Step 3: Identify different use cases.
Use cases ‘from server’ and ‘certification’ in Mutt,
ALMail and OE are not in MH. These use cases im-
ply protocols such as IMAP that can store messages
on the server side.

117

yes no yes
yes no yes

yes

: Change of Var.

var1=“vCA”
change1=“commercial CA
includes vCA”

: Stakeholder

name=“Receive User”
isactor=true

: Stakeholder

name=“Send User”
isactor=true

: Stakeholder

name=“CA”
isactor=false

: Pref. and Reason

pref=“yes”
reason=“My
identity is
authenticated.”

: Pref. and Reason

pref=“no”
reason=“It takes
cost.”

: Pref. and Reason

pref=“yes”
reason=“I do not need to
manage keys by myself.”

: Pref. and Reason

pref=“yes”
reason=“We earn
money.”

gHiCost: NFR

note=“High cost”

: NFR Taxonomy

main=“Cost”

gHiAuth: NFR

note=“Authenticated”

: NFR Taxonomy

main=“Security”
sub=“Accuracy”

gNoKeyMan: NFR

note=“No key management”

: NFR Taxonomy

main=“Usability”
sub=“Operability”

Figure 11. Matrix for vCA in (2)

: Change of Var.

var1=“vIsAuto”
change1=“*->true”

var2=“vNumCom”
change2=“increase”

: Stakeholder

name=“ISP,
internet service
provider”
isactor=false

: Pref. and Reason

pref=“yes”
reason=“We earn
money.”

: Use Case

name=“Receive messages”

: Stakeholder

name=“Communi
cation Provider”
isactor=false
example=“AT&T”

: Pref. and Reason

pref=“yes”
reason=“We earn
money.”

: Stakeholder

name=“Receive
User”
isactor=true

: Pref. and Reason

pref=“no”
reason=“The
calling cost
increases.”

gHiCost: NFR

note=“High cost”

: NFR Taxonomy

main=“Cost”

Figure 9. Object Diagram for vIsAuto and
vNumCom (Another representation of a ma-
trix in Figure 7) in (1)

Step 4: Identify variables characterizing the differences as
shown in Table 5.

Steps 5 and 6: We focus on the two instances of ‘Change
of variables’. We write two matrices in Figure 13 and
14. Due to the limitation in the number of pages, we
do not write all instances of ‘Preference and reasons’
in these figures. On writing these matrices, we deter-
mined two additional stakeholders and three NFR.

yes
no

: Change of Var.

var1=“vCrypt”
change1=“increase”

: Stakeholder

name=“Receive
User”
isactor=true

: Stakeholder

name=“Intruder”
isactor=false

gOnlyRpt: NFR

note=“Only recipient can read
messages.”

: NFR Taxonomy

main=“Security”
sub=“Confidentiality”

: Pref. and Reason

pref=“yes”
reason=“Safe if messages
are stolen.”

: Pref. and Reason

pref=“no”
reason=“I can not understand messages even if they can be stolen.”

Figure 10. Matrix for vCrypt in (2)

(4) Invoke external applications

Step 3: Identify different use cases.
The use case ‘invoke external application’ in Mutt and
ALMail and the use case ‘execute active contents’ in
OE do not appear in MH. OE also has the use case
‘control execution of active contents’. A use case ‘al-
low hyperlink(HTML)’ in ALMail also involves simi-
lar functions.

Step 4: Identify variables characterizing the differences as
shown in Table 6.

Steps 5 and 6: We focus on the two instances of ‘Change
of variables’. We write two matrices in Figures 15 and
16. On writing these matrices, we determined one ad-
ditional stakeholder and four NFR.

118

Receive user

Read messages

Format message

Select
folder

Select
messages

MH

Receive user Receive server

Read messages

Select
messages

Mutt
From server

Invoke external application

Read next

Read previous

Select
folder

Invoked application

Certification

Receive user Receive server

Read messages

Select
messages

ALMail
From server

Invoke
external application

Select
folder

Invoked application

Certification

Allow
hyperlink
(HTML)

Show several messages at once

Receive user Receive server

Read
messages

Select
messages

OE
From server

Execute
active contents

Invoked application

Certification

Control execution
of active contents

Decode messages

CA

(3)

(4)

(3)

(4)(4)

(3)

(4)

Figure 12. Use Cases and Actors around ‘Read messages’

Table 5. Variables in (3)
Type Name Meaning and Invariant
set vArea Area where MUA is used. {any,

only in company, only in depart-
ment, · · · }

set vResPer Person responsible for message
archive. {self, server manager}

Table 6. Variables in (4)
Type Name Meaning and Invariant
pset vApp Set of applications
boolean vAutoEx Admit automatic execution or not

3.3.3 UC: ‘Import messages’

Figure 17 shows two partial use case diagrams for each
MUA around a use case ‘Import messages’. We discuss the
differences in these diagrams.

(5) Import messages from other MUA

Step 3: Identify different use cases.
A use case ‘Import messages’ in MH and OE is not in
other systems. In the case of OE, it can import mes-
sages from other MUA, e.g., Eudora.

Step 4: Identify variables characterizing the differences as
shown in Table 7.

Steps 5 and 6: We focus on the an instance of ‘Change of
variables’. We write two matrices in Figure 18. On
writing these matrices, we determined two additional

yes no
yes

: Change of Var.

var1=“vArea”
change1=“*->any”

: Stakeholder

name=“Receive
User”
isactor=true

: Stakeholder

name=“Intruder”
isactor=false

gAnyWhere: NFR

note=“Users can read his messages
anywhere without his own PC.”

: NFR Taxonomy

main=“Usability”
sub=“Operability”

: Pref. and Reason

pref=“yes”
reason=“It is easier to steal messages than before.”

gLowConf: NFR

note=“Messages are download
via public networks.”

: NFR Taxonomy

main=“Security”
sub=“Confidentiality”

Figure 13. Matrix for vArea in (3)

Table 7. Variables in (5)
Type Name Meaning and Invariant
pset vMua Set of MUA

stakeholders and one NFR.

3.4 Evaluation
The use of our method in this example has resulted in

several findings. In normal GQM, it is not easy to determine
goals. In our method, this is not very difficult, because we
can easily generalize goals from use cases written in system
interaction style. In addition, such use cases can be easily
written. NFR taxonomy also helps us to determine them.

It is easy to find malicious stakeholders, e.g., intruders,

119

yes
no

: Change of Var.

var1=“vResPer”
change1=“* ->
server manager”

: Stakeholder

name=“Receive
User”
isactor=true

: Stakeholder

name=“Server
Manager”
isactor=false

gLowEffort: NFR

note=“low effort for
message management.”

: NFR Taxonomy

main=“Usability”

: Pref. and Reason

pref=“yes”
reason=“I do not have to
save messages in my PC.”

Figure 14. Matrix for vResPer in (3)

yes no
yes

yes

: Change of Var.

var1=“vApp”
change1=“vApp includes any
applications.”

: Stakeholder

name=“Receive User”
isactor=true

: Stakeholder

name=“Sender User”
isactor=true

: Stakeholder

name=“Intruder”
isactor=false

: Pref. and Reason

pref=“no”
reason=“Contents could
be illegally operated.”

gInt: NFR

note=“Contents on the
client side can be
handled by any
application from
outside.”

: NFR Taxonomy

main=“Security”
sub=“Integrity”

gAttract: NFR

note=“Messages can
be shown attractively.”

: NFR Taxonomy

main=“Usability”
sub=“Attractiveness”

Figure 15. Matrix for vApp in (4)

or competitors by observing the change of variables. This
is important because the world is insecure and competitive
now.

NFR normally cut across several functions [17]. It is
not so easy to identify such crosscuts only with normal use
case diagrams; however, the variables in our method help
us to identify them. For example, both vIsAuto in (1) and
vAutoEx in (4) refer to a similar property of user opera-
tions, thus we can consistently design the operations. In
general, one of the disadvantages of use case diagrams is

yes no
yes

yes

: Change of Var.

var1=“vAutoEx”
change1=“* -> true.”

: Stakeholder

name=“Receive User”
isactor=true

: Stakeholder

name=“Send User”
isactor=true

: Stakeholder

name=“Intruder”
isactor=false

: Pref. and Reason

pref=“yes”
reason=“illegal operations
are rarely blocked..”

gConfim: NFR

note=“Contents on the
client side can be
handled without
confirmation.”

: NFR Taxonomy

main=“Security”
sub=“Integrity”

gEasy: NFR

note=“Messages can be
shown automatically.”

: NFR Taxonomy

main=“Usability”
sub=“Operability”

Figure 16. Matrix for vAutoEx in (4)

Receive user OS(stdin)

Import messages

MH

Receive user Other MUA

Import messages

OE

Figure 17. Use Cases and Actors around ‘Im-
port messages’

yes
no

: Change of Var.

var1=“vMua”
change1=“MUA1
becomes a part of
vMua”

: Stakeholder

name=“User of
MUA1”
isactor=false

: Stakeholder

name=“Provide
r of MUA1”
isactor=false

gEasyReplace: NFR

note=“MUA1’s users can easily
replace their MUA to this.”

: NFR Taxonomy

main=“Portability”
sub=“Replaceability”

: Pref. and Reason

pref=“no”
reason=“Markets for our
product MUA1 have decreased.”

Figure 18. Matrix for vMua in (5)

that they cannot easily handle data or variables like data
flow diagrams.

We can also determine the property related to ‘compli-
ance’. Figure 19 shows the differences between message
deletion in UNIX based systems and Windows based sys-
tems. In general, Windows based systems store deleted files
or data in the trash; however UNIX based systems do not.
This difference is clearly represented in this Figure. How-
ever, our method cannot find this case, since use cases ex-
cept ‘delete messages’ in Figure 19 are not included in the
surrounding of ‘delete messages’ by definition.

4. Conclusions and Discussion

In this paper, we present a method to identify stakehold-
ers, their preferences about NFR by comparing use case di-

Receive user

Delete messages
MH or
Mutt

Receive user

Delete messages

ALMail orOE

Restore deleted messages

Clear message trash

while exiting MUA shell

Figure 19. Use Cases and Actors related to
‘delete messages’

120

agrams. The results of our method can be used to prioritize
NFR and stakeholders. In WinWin approach [5], stakehold-
ers should explore the trade-offs among their goals (win
conditions). The method proposed here can contribute to
this task, since we can understand the relationships among
NFR goals through the variables. In DDP [8], exhaus-
tive elicitation of requirements and risks is important. Our
method will contribute to such an elicitation process, since
unexpected situation can be generated by changing the val-
ues of variables related to NFR. Our method also can be
used with AGORA [13] that clarifies the conflicts among
stakeholders.

This method is based on the package oriented require-
ments elicitation method PAORE [14]. However, we did
not handle NFR and preferences of stakeholders in PAORE.
A simple functional decomposition represented by tables is
used in PAORE. However, we could not naturally handle
actors related to systems. As a result, the method in this
paper overcomes several weaknesses of PAORE.

So as to use our method efficiently, we have to develop
supporting tools. We at least need a database for use case
diagrams and a tool for comparing the diagrams.

Although we do not handle internal structure of each use
case, for example, scenario descriptions, we can obtain a
sufficient number of stakeholders and preferences. Thus,
we do not plan to handle scenarios in this method.

Apparently, our method cannot handle stakeholders that
are related to the development process, e.g., software de-
signers and programmers. So as to handle such stakehold-
ers, we need specifications of the software development
process.

Since stakeholders in this method can be regarded as
viewpoints [16], one of the purposes of this method can
be represented as ‘finding new viewpoints’. Currently, we
do not focus on inconsistency resolution among viewpoints.
Stakeholders in this method are also similar to Persona [7],
in other words, actual people.

There are few related works about requirements elicita-
tion using GQM and quality standards. GQM, QFD and re-
quirements specifications are used for quality control [19].
Quality standards are used for package selection [10].

References

[1] IEEE Guide for Developing System Requirements Specifi-
cations, Dec. 1998. IEEE Std 1233-1998, ISBN 0-7381-
0337-3 SH94654 (Print).

[2] AL-Mail32. http://www.almail.com/. Japanese
page only.

[3] I. Alexander and S. Robertson. Understanding Project So-
ciology by Modeling Stakeholders. Software, 21(1):23–27,
Jan./Feb. 2004.

[4] V. R. Basili and D. M. Weiss. A Methodology for Collect-
ing Valid Software Engineering Data. IEEE Transactions on
Software Engineering, SE-10(6):728–738, Nov. 1984.

[5] B. Boehm, P. Grunbacher, and R. O. Briggs. Devel-
oping Groupware for Requirements Negotiation: Lessons
Learned. IEEE Software, 18(3):46–55, May/Jun. 2001.

[6] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
functional Requirements in Software Engineering. Kluwer
Academic Publishers, 2000.

[7] A. Cooper. The Inmates Are Running the Asylum. SAMS,
1999.

[8] S. L. Cornford, M. S. Feather, J. C. Kelly, T. W. Larson,
B. Sigal, and J. D. Kiper. Design and Development Assess-
ment. In Proceedings of the Tenth International Workshop
on Software Specification and Design (IWSSD’00), pages
105–114, 2000.

[9] M. Fowler and K. Scott. UML Distilled, Applying the Stan-
dard Object Modeling Language. Addison-Wesley, 1st edi-
tion, 1997.

[10] X. Franch and J. P. Carvallo. Using Quality Models in Soft-
ware Package Selection. Software, 20(1):34–33, Jan./Feb.
2003.

[11] M. Glinz. A Lightweight Approach to Consistency of Sce-
narios and Class Models. In 4th International Conference
on Requirements Engineering, pages 49–58, 2000.

[12] International Standard ISO/IEC 9126-1. Software engineer-
ing - Product quality - Part 1: Quality model, 2001.

[13] H. Kaiya, H. Horai, and M. Saeki. AGORA: Attributed
Goal-Oriented Requirements Analysis Method. In IEEE
Joint International Requirements Engineering Conference,
RE’02, pages 13–22, Sep. 2002.

[14] J. Kato, M. Saeki, A. Ohnishi, M. Nagata, H. Kaiya,
S. Komiya, S. Yamamoto, H. Horai, and K. Watahiki.
PAORE: Package Oriented Requirements Elicitation. In
Proceedings of 10th Asia-Pacific Software Engineering Con-
ference (APSEC 2003), pages 17–26, Chiang Mai, Thailand,
Dec. 2003. IEEE Computer Society Press.

[15] L. A. Macaulay. Requirements Engineering. Applied Com-
puting. Springer, 1996.

[16] B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework
for Expressing the Relationships Between Multiple Views in
Requirements Specification. IEEE Transations on Software
Engineering, 20(10):760–773, Oct 1994.

[17] M. Saeki and H. Kaiya. Transformation Based Approach
for Weaving Use Case Models in Aspect-Oriented Re-
quirements Analysis. In The 4th AOSD Modeling With
UML Workshop, Oct. 2003. Joint workshop of UML
2003, http://www.cs.iit.edu/˜oaldawud/AO-
M/index.htm.

[18] T. Systa. Understanding the Behavior of Java Programs. In
Seventh Working Conference on Reverse Engineering, pages
214–223, 2000.

[19] S. Szejko. Requirements Driven Quality Control. In COMP-
SAC’2002, pages 125–130, 2002.

[20] The Mutt E-Mail Client. http://www.mutt.org/.
[21] The RAND MH Message Handling System UCI version

6.8.3. http://www.ics.uci.edu/%7Emh/.

121

