
Specifying Runtime Environments and Functionalities
of Downloadable Components under the Sandbox Model

Haruhiko Kaiya
Shinshu University
4-17-1 Wakasato

Nagano City, 380-8553, JAPAN
kaiya@cs.shinshu-u.ac.jp

Kenji Kaijiri
Shinshu University
4-17-1 Wakasato

Nagano City, 380-8553, JAPAN
kaijiri@cs.shinshu-u.ac.jp

Abstract

In this paper, we propose a specification of both run-
time environments and software components which can be
loaded not only from your local system but also from the
other systems over the computer network. Because com-
ponents from the other system are not always enough reli-
able or safe to act freely in your own system, you should
limit their activities to a certain context. Such assumption
is based on the sandbox security model. Because such com-
ponents are largely influenced by the runtime environments,
users sometimes lose sight of the abilities and limitations of
such components. Therefore, they fail to reuse the compo-
nents in the right way. We provide a way to specify such
properties, so that component users can precisely under-
stand the abilities and limitations.

1. Introduction

Recently, we can use software components which can
be downloaded from the other machines over the network,
and can be linked dynamically during runtime. This kind of
software components can be categorized into mobile code
[10], and it enables our system to change itself dynamically
in runtime. Even if a system can act dynamically and au-
tonomously with mobile codes, we should rule its behavior.
Therefore, we should also specify the behavior of mobile
codes linked into the system.

Normally for specifying the properties of software com-
ponents, documents in natural languages are used. Unfortu-
nately, such documents tend to be long, incomplete, redun-
dant or vague, component users sometimes can not use such
components adequately. For example, the specification of
RMI[8] consists of about 90 pages of documents and is hard
to read it completely. But small manuals in many books are
too simple to understand the components. One of the suit-

able tool for specification is formal method. Though writing
a formal specification of components looks like expensive,
we can retrieve the costs for using the components and the
specification repeatedly [5].

We can not simply use the way of traditional functional
specification, e.g. pre/post conditions and invariants, for
mobile codes or components, because such codes are not
always trusted. Moreover, when you want to run a system
with mobile codes, e.g RMI or Jini, you should setup several
kinds of servers, connect the networks suitably, deploy sev-
eral pieces of codes on the suitable locations, and so on. In
other words, you should prepare its runtime environment.
As a result, a mobile component can not be fully speci-
fied without documents of such environment and its security
model. One of the famous security model is called sandbox
model, where local code is trusted to have enough access to
vital system resources while downloaded code is not trusted
and can access only the limited resources[9]. This model is
used in Java1. There are another security models [7], and
Java2 (JDK1.2 and later) has hybrid security model.

In this paper, we propose a way of specification for mo-
bile components under the sandbox security model, which
are not autonomous but downloaded by the other compo-
nents or systems. We call such kind of mobile components
as downloadable components in this paper. With our speci-
fication, users of downloadable components will be able to
use the components and their environment adequately.

In section2, we introduce the properties and problems
of downloadable components. In section3, we summarize
what should be specified in addition for such properties, and
we give examples in section4 to show the advantages of the
specification. In the last section, we summarize our results
and discuss the future works.

2. Properties and Problems of Downloadable
Components

In this section, we introduce examples, underlying mech-
anism and problems of downloadable components. Because
examples in this section are all about Java system, we regard
the term ‘class’ in the same light as the term ‘component’.

2.1. What is Downloadable Component?

The most famous system using downloadable compo-
nents is an Applet. Because classes used by an Applet are
not enough reliable or safe, the classes are not allowed com-
pletely to operate system resources, e.g. file system or net-
work connections, among the browser side system.

RMI (Remote Method Invocation)[8] is regarded as
object-oriented RPC for Java, and its stub and skeleton are
also downloadable components. In RMI system, in contrast
with an Applet, programmers should explicitly manage the
limitation by the SecurityManager in Java. Therefore,
you can use the downloadable components without limita-
tion, if you want.

2.2. Sandbox Security Model

The behaviors of an Applet and a RMI follow the sand-
box security model. The essence of the model is that local
code is trusted to have full access to vital system resources
(such as the file system) while downloaded remote code is
not trusted and can access only limited resources provided
inside the sandbox [9]. This model is widely used by Java1
language system.

Because the sandbox model provides only two kind of
spaces for codes, a trusted space for local code and another
space in the sandbox for remote code, we can not flexibly
represent many kinds of security limitation in one JVM. In
Java2 system, we are free from this limitation and can rep-
resent many kinds of security limitation.

However, the sandbox model is still basic concept of
downloadable components because the extension in Java2
can be regarded as the multiple-sandboxes model. More-
over, sandbox model is used as default model still in Java2
when the programmer do not explicitly specify a security
policy [2]. Therefore, we only focus on the sandbox model
of Java1 in this paper.

2.3. Class Loaders

Components of Java are running on the Java Virtual Ma-
chine (JVM). We focus on the functionality of the compo-
nents during their runtime in this paper. JVM has two dif-
ferent kind of class loaders, system class loader and user-
defined class loaders [6]. System class loader is used for

1 import java.net.*;
2 import java.io.*;
3
4 public class DLoader extends ClassLoader{
5 // several definitions are omitted
6
7 protected Class loadClass(String name, boolean res)
8 throws ClassNotFoundException{
9 Class clazz = null;

10
11 try{ return findSystemClass(name); }
12 catch(ClassNotFoundException e1){}
13 catch(NoClassDefFoundError e2){}
14
15 clazz=findLoadedClass(name);
16 if(clazz != null){ return clazz; }
17
18 clazz=findClass(name);
19 if(clazz == null){
20 throw new ClassNotFoundException(name);
21 }
22 return clazz;
23 }
24
25 private synchronized Class findClass(String name){
26 // finding byte code from the network resource
27 // and define class.
28 //
29 return defineClass(name, data, 0, total);
30 //
31 }
32
33 // several definitions are omitted
34
35 public static void main(String args[]){
36 try{
37 DLoader loader=new DLoader(new URL(args[0]));
38 Class cc=loader.loadClass(args[1]);
39 Runnable cmd=(Runnable)cc.newInstance();
40 cmd.run();
41 }catch(Throwable e){
42 e.printStackTrace();
43 }
44 }
45 }

Figure 1. Simple User-defined Class Loader

local codes, and user-defined class loaders are used for re-
mote codes. Figure1 is an example of an user-defined class
loader.

Security policy of a JVM runtime is decided in the fol-
lowing steps.

1. Decide whether your class loader takes account of the
SecurityManager or not. For example, the loader
in Figure1 does not, but loaders of RMI and an Applet
does.

2. Decide each security policies listed in class Secu-
rityManager. The manager class has about 30
numbers of check lists for limiting the operations for
the system resources, e.g. file systems and network
connections[8]. You can implement your own manager
as a subclass of SecurityManager. For example,
the manager for RMI, i.e. RMISecurityManager
disallows most of all system operations.

Then, the decision is reflected to the component functional-
ity as follows.

• If a class loader is designed to require its Securi-
tyManager but the manager is not given, the class
loader itself can not run. As a result, the classes loaded
by the loader also can not run.

• If a loader is not designed to require its SecurityM-
anager, the loader itself and the classes loaded by it
can run.

• Methods in Java class libraries for operating the sys-
tem resources are designed to refer the related check
lists in the SecurityManager of their system, if the
manager is defined. Therefore, the activities of each
method is limited by the manager.

As a result, if an user-defined class loader does not re-
quire its manager but a manager is defined, its limita-
tion is applied to the system operations.

Though the security model is extended and generalized
in Java2, class loading mechanism above still plays a large
role in Java2.

2.4. The Problems of Downloadable Components

As mentioned above, Java has flexible but complex
mechanism for loading its components. As a result, without
deep understanding of class loading and security system,
component users tend to lose sight of the abilities and lim-
itations of such components, especially those downloaded
from the other system over the network. Here we summa-
rize the problems.

2.4.1 Loader Selection Problem

As explained above, a component of Java changes its be-
haviors along with its class loader. In other words, a class
loader limits the behaviors of classes loaded by the loader.
Therefore, component users should know the specification
of components with their loaders. But it is not so easy be-
cause

• application programmers normally do not care about
the class loaders,

• and the defining loader is dynamically decided accord-
ing to both

– the logic of the initiating loader.

– and the deployment of components

If a component C is the result of L.loadClass(), a
loader L is called initiating loader of C. If a component C
is the result of L.definClass(), a loader L is called
defining loader of C [4].

The logic of the initiating loader specifies the order for
selecting defining loader. For example, DLoader in Fig-
ure1 uses the following order to select its defining loader,

1. system class loader (line 11-13),

2. cache of this loader (line 15-16),

3. defineClass method of this class via the method
findClass (line 18).

As a result, components in the local system, which will
be loaded by the system class loader, have the priority in
DLoader. Loaders of RMI and an Applet have similar
logic of selection. We can also develop a loader which gives
a priority to the components loaded via the network.

2.4.2 Deployment Problem

The deployment also affects the selection of the defining
loader. For example, if you use RMIClassLoader for
loading the components over the network and the same
components is also deployed in your local system, RMI-
ClassLoader is never used as their defining loader but
system class loader is used. As a result, the security man-
ager gives no effect to the loaded components. Therefore
component user should know whether a security manager is
active or not, by checking the deployment of components.

3. Additional Specification for such Properties

For describing a specification of a downloadable compo-
nent concretely, we represent the states related to the com-
ponent and the functions for changing the states. We de-
scribe the following states.

• Deployment map of files or byte streams which can
generate runtime components. This map is shared by
all JVM runtimes.

• Access flags of each system resources from a compo-
nent in the sandbox. This flags are defined in each
JVM runtime.

• Search path of files or byte streams keeping compo-
nent’s code. This path is defined in each class loader.

• Identifier of runtime where each component is acti-
vated.

• Relationships between a runtime component and its
sources.

• Component specific attributes.

We describe the following functions.

• Set or modify the flags, the map, the path and the rela-
tionships.

• Pre and post conditions for each method of the com-
ponent. In contract to the traditional specification, the
conditions are defined not only the component specific
attributes but also the flags, the map, the path and the
relationships above.

������������

�

����

VWXE
�������

���	
������

VNHOHWRQ

�����	��

��������

����

�������� ����

Figure 2. RMI with stub and skeleton both in
the local system and over the network

4. Examples

In this section, we introduce examples to show how the
specification in section3 is useful for component users to
understand the properties of downloadable components. We
use Z notation for our specification in this paper because
it is widely known in the software engineering field, and
because it is fit for object-oriented mechanism.

4.1. Stub with Cracking Code: Counter Example

4.1.1 Story

Even though we know an RMI call contains cracking codes
which will steal our password file, we should use the RMI
call for our system. Therefore we use SecurityMan-
ager which limits such stealing so that we can guard our
system against the cracking. Moreover, we carefully deploy
current version of stub codes so as to stop the progress of
cracking in the codes. Here we check the safety of this sit-
uation as shown in Figure2. Note that we only take account
of access flags in Section3 in the following specification.

4.1.2 Specification

First, we specify the system resources and their security
limitation in SysRes. The security limitation can change
only at once by SetSecurityManager method in Java,
we model this method in SetLimit.

SysRes
res : R �→ Bool; limit : P R

limit ⊆ dom res; ∀ x : limit • (x, false) ∈ res

SetLimit
∆SysRes; l? : P R

limit �= ∅ ⇒ l? = limit′

R is basic type which represents a set of resources.
Schema SysRes represents a security level of this machine.

A method with cracking codes itself and the cracking
codes can represented as follows;

Func
x?, y! : Z

y! = f (x?)

Crack
pas! : R; ΞSysRes

(pas!, true) ∈ res

The method will be observed from the component users
as follows;

F =̂ (Crack o
9 Func ∧ ΞSysRes) \ {pas!}

4.1.3 Inference

Then we check the following schema,

SetLimt o
9 Crack o

9 (Func ∧ ΞSysRes) | pas! ∈ l?

This schema tells that cracking is established even if corre-
sponding operation is protected by the security manager.

This schema is inconsistent because both (pas!, true) ∈
res and (pas!, false) ∈ res are satisfied at the same time
even if res is function. Therefore, we can conclude that the
cracking is never established and our protection is enough
safe.

4.1.4 Discussion

The specification above does not mention that the policy of
security checking is changing along with the birthplace of
components. As a result, inference above does not reflect
the fact. Unfortunately, in fact, the cracking can be estab-
lished in the story above. We will resolve this problem in
the next.

4.2. Stub with Cracking Code: Resolved

4.2.1 Specification

We introduce two additional basic types, Loc for location
of byte codes, and ByteCode for realizing a class and an
instance in run time. Then we define the deployment of byte
codes over the network (the deployment map in Section3)
as follows;

| deploy : Loc �→ P ByteCode

We extend SysRes schema with the location where the
components are running (identifier of runtime in Section3),
and introduce Class schema for representing the birthplace,
byte code and the logic for selecting the birthplace of the
class (the search path and relationship in Section3).

SysRes
res : R �→ Bool; limit : P R; here : Loc

limit ⊆ dom res
∀ x : limit • (x, false) ∈ res
here ∈ dom deploy

Class
birth : Loc; byte : ByteCode
lslctr : seq Loc

birth ∈ ran lslctr
birth ∈ dom deploy

Then the attribute birth in schema Class is defined the
following schema.

SetLoader
sl?; seq Loc; ∆Class

lslctr′ = sl?
∀ x, y : N • byte ∈ deploy lslctr′ x∧

x ∈ dom lslctr′ ∧ lslctr′ y = birth′ ⇒ y ≤ x

The second and third lines of predicate part (the search
path in Section3) are slightly complex, but it simply says
that the first location which involves byte in lslctr is its birth.

The schema Crack is modified as follows for represent-
ing the effect of birthplace.

Crack =̂ [pas! : R; ΞSysRes; ΞClass |
here �= birth ⇒ (pas!, true) ∈ res]

4.2.2 Inference

The following expression becomes consistent,

SetLimit o
9 (SetLoader ∧ ΞSysRes o

9 Crack o
9

Func ∧ ΞClass ∧ ΞSysRes) \ Class
| pas! ∈ l? ∧ sl? = 〈here, there〉

under the situation of

deploy = {(here, {byte, · · · }), (there, {byte, · · · }) · · · }.

In Figure2, here corresponds to ‘Call’, there to ‘Http
server’, and byte to ‘stub’. As a result, cracking can be
established even if corresponding operation is protected by
the security manager under this situation. So if you want to
stop the cracking, you should change sl? or deploy.

5. Discussion

In this paper, we discuss and propose how to specify the
environments and the functionalities of downloadable soft-
ware components for suitable reuse, through the case study
of Java. Though the style of specification here is not differ-
ent from the style of traditional specification, we can clarify
how and what kind of properties should be described. For-
malization for JVM is already proposed [3] and the security
issue of Java is also reported [1], but these researches are
not intended to encourage the reuse of components.

While component users can design their own system in
detail by the flexibility of security policy, it becomes harder
to specify and coordinate the system. For example, if each
component in a system has different security policy, it is
not so easy to identify the functionality of each component
in runtime. In Java2, Permission and AccessCon-
troller class are introduced for flexible security policies
[9]. Moreover, many kinds of security model are available
for mobile codes now, e.g. sandbox, code signing, proof-
carrying code and so on [7], so that we can develop more
flexible and safe codes on these models. However, it will
become difficult to identify the functionality of each com-
ponent in runtime under the extended security model and
mechanism. Therefore, specification for using mobile codes
should be also extended together.

References

[1] D. Dean, E. W. Felten, and D. S. Wallach. Java Security:
From HotJava to Netscape and Beyond. In Proceedings
1996 IEEE Symposium on Security and Privacy, pages 190–
200, May 1996.

[2] L. Gong. Secure Java Class Loading. IEEE Internet Com-
puting, 2(6):56–61, Nov. and Dec. 1998.

[3] T. Jensen, D. L. Metayer, and T. Thorn. Security and Dy-
namic Class Loading in Java: A Formalization. In Proceed-
ings of International Conference on Computer Languages,
pages 4–15, May 1998.

[4] S. Liang and G. Bracha. Dynamic class loading in the
Java virtual machine. In Proceedings of the conference on
Object-oriented programming, systems, languages, and ap-
plications, pages 36–44, Oct. 1998.

[5] B. Meyer. The Next Software Breakthrough. COMPUTER,
30(7):113–114, Jul. 1997. IEEE/CS.

[6] J. Meyer and T. Downing. Java Virtual Machine. O’Reilly,
first edition, Mar. 1997.

[7] A. D. Rubin and J. Daniel E. Geer. Mobile Code Security.
IEEE Internet Computing, 2(6):30–34, Nov. and Dec. 1998.

[8] Sun Microsystems, Inc. Java Remote Method Invocation
Specification, Feb. 1997. Revision 1.4, JDK1.1 FCS.

[9] Sun Microsystems, Inc. Java Security Architecture
(JDK1.2), Oct. 1998. Version 1.0.

[10] T. Thorn. Programming languages for mobile code. ACM
Computing Surveys, 29(3):213–239, Sep. 1997.

